import os
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data os.environ['TF_CPP_MIN_LOG_LEVEL'] = '' learning_rate = 0.01 # 学习率
training_epochs = 20 # 训练轮数,1轮等于n_samples/batch_size
batch_size = 128 # batch容量
display_step = 1 # 展示间隔
example_to_show = 10 # 展示图像数目 n_hidden_units = 256
n_input_units = 784
n_output_units = n_input_units def WeightsVariable(n_in, n_out, name_str):
return tf.Variable(tf.random_normal([n_in, n_out]), dtype=tf.float32, name=name_str) def biasesVariable(n_out, name_str):
return tf.Variable(tf.random_normal([n_out]), dtype=tf.float32, name=name_str) def encoder(x_origin, activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer'):
Weights = WeightsVariable(n_input_units, n_hidden_units, 'Weights')
biases = biasesVariable(n_hidden_units, 'biases')
x_code = activate_func(tf.add(tf.matmul(x_origin, Weights), biases))
return x_code def decode(x_code, activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer'):
Weights = WeightsVariable(n_hidden_units, n_output_units, 'Weights')
biases = biasesVariable(n_output_units, 'biases')
x_decode = activate_func(tf.add(tf.matmul(x_code, Weights), biases))
return x_decode with tf.Graph().as_default():
with tf.name_scope('Input'):
X_input = tf.placeholder(tf.float32, [None, n_input_units])
with tf.name_scope('Encode'):
X_code = encoder(X_input)
with tf.name_scope('decode'):
X_decode = decode(X_code)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.pow(X_input - X_decode, 2))
with tf.name_scope('train'):
Optimizer = tf.train.RMSPropOptimizer(learning_rate)
train = Optimizer.minimize(loss) init = tf.global_variables_initializer()
writer = tf.summary.FileWriter(logdir='logs', graph=tf.get_default_graph())
writer.flush() learning_rate = 0.01 # 学习率
training_epochs = 20 # 训练轮数,1轮等于n_samples/batch_size
batch_size = 128 # batch容量
display_step = 1 # 展示间隔
example_to_show = 10 # 展示图像数目 n_hidden_units = 256
n_input_units = 784
n_output_units = n_input_units def WeightsVariable(n_in, n_out, name_str):
return tf.Variable(tf.random_normal([n_in, n_out]), dtype=tf.float32, name=name_str) def biasesVariable(n_out, name_str):
return tf.Variable(tf.random_normal([n_out]), dtype=tf.float32, name=name_str) def encoder(x_origin, activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer'):
Weights = WeightsVariable(n_input_units, n_hidden_units, 'Weights')
biases = biasesVariable(n_hidden_units, 'biases')
x_code = activate_func(tf.add(tf.matmul(x_origin, Weights), biases))
return x_code def decode(x_code, activate_func=tf.nn.sigmoid):
with tf.name_scope('Layer'):
Weights = WeightsVariable(n_hidden_units, n_output_units, 'Weights')
biases = biasesVariable(n_output_units, 'biases')
x_decode = activate_func(tf.add(tf.matmul(x_code, Weights), biases))
return x_decode with tf.Graph().as_default():
with tf.name_scope('Input'):
X_input = tf.placeholder(tf.float32, [None, n_input_units])
with tf.name_scope('Encode'):
X_code = encoder(X_input)
with tf.name_scope('decode'):
X_decode = decode(X_code)
with tf.name_scope('loss'):
loss = tf.reduce_mean(tf.pow(X_input - X_decode, 2))
with tf.name_scope('train'):
Optimizer = tf.train.RMSPropOptimizer(learning_rate)
train = Optimizer.minimize(loss)
init = tf.global_variables_initializer() writer = tf.summary.FileWriter(logdir='E:\\tensorboard\\logs', graph=tf.get_default_graph())
writer.flush() mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True) with tf.Session() as sess:
sess.run(init)
total_batch = int(mnist.train.num_examples / batch_size)
for epoch in range(training_epochs):
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
_, Loss = sess.run([train, loss], feed_dict={X_input: batch_xs})
Loss = sess.run(loss, feed_dict={X_input: batch_xs})
if epoch % display_step == 0:
print('Epoch: %04d' % (epoch + 1), 'loss= ', '{:.9f}'.format(Loss))
writer.close()
print('训练完毕!') '''比较输入和输出的图像'''
# 输出图像获取
reconstructions = sess.run(X_decode, feed_dict={X_input: mnist.test.images[:example_to_show]})
# 画布建立
f, a = plt.subplots(2, 10, figsize=(10, 2))
for i in range(example_to_show):
a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
a[1][i].imshow(np.reshape(reconstructions[i], (28, 28)))
f.show() # 渲染图像
plt.draw() # 刷新图像
# plt.waitforbuttonpress()

吴裕雄 PYTHON 神经网络——TENSORFLOW 单隐藏层自编码器设计处理MNIST手写数字数据集并使用TensorBord描绘神经网络数据的更多相关文章

  1. 吴裕雄 PYTHON 神经网络——TENSORFLOW 双隐藏层自编码器设计处理MNIST手写数字数据集并使用TENSORBORD描绘神经网络数据2

    import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data os.envi ...

  2. Android+TensorFlow+CNN+MNIST 手写数字识别实现

    Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...

  3. 基于tensorflow的MNIST手写数字识别(二)--入门篇

    http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...

  4. TensorFlow——MNIST手写数字识别

    MNIST手写数字识别 MNIST数据集介绍和下载:http://yann.lecun.com/exdb/mnist/   一.数据集介绍: MNIST是一个入门级的计算机视觉数据集 下载下来的数据集 ...

  5. Tensorflow实现MNIST手写数字识别

    之前我们讲了神经网络的起源.单层神经网络.多层神经网络的搭建过程.搭建时要注意到的具体问题.以及解决这些问题的具体方法.本文将通过一个经典的案例:MNIST手写数字识别,以代码的形式来为大家梳理一遍神 ...

  6. mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)

    前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...

  7. 用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识

    用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识 循环神经网络RNN相比传统的神经网络在处理序列化数据时更有优势,因为RNN能够将加入上(下)文信息进行考虑.一个简单的RNN如 ...

  8. Tensorflow可视化MNIST手写数字训练

    简述] 我们在学习编程语言时,往往第一个程序就是打印“Hello World”,那么对于人工智能学习系统平台来说,他的“Hello World”小程序就是MNIST手写数字训练了.MNIST是一个手写 ...

  9. 基于TensorFlow的MNIST手写数字识别-初级

    一:MNIST数据集    下载地址 MNIST是一个包含很多手写数字图片的数据集,一共4个二进制压缩文件 分别是test set images,test set labels,training se ...

随机推荐

  1. Winfrom控件 特效

    链接:https://pan.baidu.com/s/1O9e7sxnYFYWD55Vh5fxFQg 提取码:5cey 复制这段内容后打开百度网盘手机App,操作更方便哦 Winfrom控件查询手册. ...

  2. ASP.NET Razor 语法

    主要的 Razor C# 语法规则 Razor 代码块包含在 @{ ... } 中 内联表达式(变量和函数)以 @ 开头 代码语句用分号结束 变量使用 var 关键字声明 字符串用引号括起来 C# 代 ...

  3. [CCPC2019秦皇岛] E. Escape

    [CCPC2019秦皇岛E] Escape Link https://codeforces.com/gym/102361/problem/E Solution 观察到性质若干然后建图跑最大流即可. 我 ...

  4. ORA-00928: missing SELECT keyword

    问题描述 ORA-00928: missing SELECT keyword 问题原因 未写表名

  5. java-日期取特定值

    import java.text.SimpleDateFormat; import java.util.Calendar; import java.util.Date; /** * @author G ...

  6. Carmichael Numbers (快速幂)

       当今计算机科学的一个重要的领域就是密码学.有些人甚至认为密码学是计算机科学中唯一重要的领域,没有密码学生命都没有意义. 阿尔瓦罗就是这样的一个人,它正在设计一个为西班牙杂烩菜饭加密的步骤.他在加 ...

  7. springmvc 整合 redis

    引入依赖 <!--redis--> <dependency> <groupId>redis.clients</groupId> <artifact ...

  8. 题解 SP27102/UVA1747 【Swap Space】

    SP27102 [Swap Space] 双倍经验:UVA1747 Swap Space 用(a,b)表示每个硬盘的原容量和新文件系统下的容量.分两种情况考虑:a≤b和a>b 第一类a≤b格式化 ...

  9. OmniGraffle原型案例 | 某APP产品原型PDF文件分享之二

    1.从 App 首页进入商城 App底部 Tab有社区.商城,我们点击「商城」进入「乐宠商城」,下面简称商城.商城采用的是经典的宫格式导航设计(还有普通列表式.和瀑布流列表式.或两者皆有等),主要有搜 ...

  10. 题解【CJOJ2608】[JZOJ 100043]第k小数

    P2608 - [JZOJ 100043]第k小数 Description 有两个非负整数数列,元素个数分别为N和M.从两个数列中分别任取一个数相乘,这样一共可以得到N*M个数,询问这N*M个数中第K ...