题目:

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

链接:  http://leetcode.com/problems/edit-distance/

题解:

Dynamic Programming动态规划的经典问题,一定要好好继续研究一下。 详解请看下面的reference。 还可以使用滚动数组继续优化空间为O(n)或者O(m)。最近在忙于房子装修,都没有时间刷题和准备面试,下一遍要补上。

下周一onsite BB,裸面,希望有好运气吧!

Time Complexity - O(mn), Space Complexity - O(mn)。

public class Solution {
public int minDistance(String word1, String word2) {
if(word1 == null || word2 == null)
return 0;
int word1Len = word1.length(), word2Len = word2.length();
int[][] dp = new int[word1Len + 1][word2Len + 1]; for(int i = 0; i < word1Len + 1; i++) //word1 as row
dp[i][0] = i; for(int j = 1; j < word2Len + 1; j++) //word2 as column
dp[0][j] = j; for(int i = 1; i < word1Len + 1; i++) {
for(int j = 1; j < word2Len + 1; j++) {
if(word1.charAt(i - 1) == word2.charAt(j - 1))
dp[i][j] = dp[i - 1][j - 1];
else
dp[i][j] = 1 + Math.min(dp[i - 1][j - 1], Math.min(dp[i][j - 1], dp[i - 1][j]));
}
} return dp[word1Len][word2Len];
}
}

Update:

主要使用DP,假设以word1为列,word2为行,初始化的时候设定distance[0][i]以及distance[j][0] - 当对方字符串为空时需要多少步骤。则转移方程为,当前字符相同时,distance[i][j] = distance[i - 1][j - 1], 否则这时insert, replace,delete权重都为1, 方程为1 + 三种改变的最小值, 既Math.min(distance[i - 1][j - 1], Math.min(distance[i - 1][j], distance[i][j - 1]))。 其中distance[i - 1][j - 1]为replace, distance[i - 1][j]是word1删除一个字符, distance[i][j - 1]是word2删除一个字符。

public class Solution {
public int minDistance(String word1, String word2) {
if(word1 == null || word2 == null)
return 0;
int word1Len = word1.length(), word2Len = word2.length();
int[][] distance = new int[word1Len + 1][word2Len + 1]; for(int i = 1; i < word1Len + 1; i++)
distance[i][0] = i; for(int j = 1; j < word2Len + 1; j++)
distance[0][j] = j; for(int i = 1; i < word1Len + 1; i++) {
for(int j = 1; j < word2Len + 1; j++)
if(word1.charAt(i - 1) == word2.charAt(j - 1))
distance[i][j] = distance[i - 1][j - 1];
else
distance[i][j] = 1 + Math.min(distance[i - 1][j - 1], Math.min(distance[i - 1][j], distance[i][j - 1]));
} return distance[word1Len][word2Len];
}
}

二刷

思路仍然不是特别清晰。我们尝试分为以下几个步骤:

  1. 这道题目应该使用dp。
  2. 要解决的是如何定义dp,  如何设置初始化状态,以及转移方程是什么。
  3. 首先我们考虑边界条件,当有一个string为空的时候我们返回0。
  4. 接下来创建一个dp矩阵dist,假如word1的长度为word1Len,word2的长度为word2Len,那么这个矩阵的长度就为[word1Len + 1, word2Len + 1]。
  5. 我们初始化第一行和第一列,dist[i][0] = i, dist[0][j] = j,  都是负责处理其中一个word为空这种情况。
  6. 接下来,我们定义dist[i][j]为 word1(0, i) 到word2(0,j) 这两个单词的min Edit distance。那么我们有以下的公式:
    1. 假如word1.charAt(i) == word2.charAt(j),那么dist[i][j] = 0
    2. 否则dist[i][j] = 1 + min (dist[i - 1][j - 1], min(dist[i - 1][j], dist[i][j - 1]))。
      1. 这里假如使用dist[i - 1][j - 1],意思是replace
      2. 假如使用dist[i - 1][j],那么是word1比word2少1个字符。 对word1来说是add
      3. 假如使用dist[i][j - 1],那么是word2比word1多一个字符。对word1来说是delete
  7. 最后返回结果dist[word1Len][word2Len]
  8. 这里其实也可以简化为滚动数组,达到Space Complexity - O(n)的结果,留给三刷了。

Java:

Time Complexity - O(mn), Space Complexity - O(mn)。

public class Solution {
public int minDistance(String word1, String word2) {
if (word1 == null || word2 == null) {
return 0;
}
int word1Len = word1.length(), word2Len = word2.length();
int[][] dist = new int[word1Len + 1][word2Len + 1];
for (int i = 1; i <= word1Len; i++) {
dist[i][0] = i;
}
for (int j = 1; j <= word2Len; j++) {
dist[0][j] = j;
} for (int i = 1; i <= word1Len; i++) {
for (int j = 1; j <= word2Len; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dist[i][j] = dist[i - 1][j - 1];
} else {
dist[i][j] = Math.min(dist[i - 1][j - 1], Math.min(dist[i - 1][j], dist[i][j - 1])) + 1;
}
}
} return dist[word1Len][word2Len];
}
}

三刷:

还是dp。当两字符相等时,取左上的值。 否则表示有一个edit distance,我们取左上,上和左三个值里最小的一个,+ 1,然后继续计算。

Java:

public class Solution {
public int minDistance(String word1, String word2) {
if (word1 == null || word2 == null) return Integer.MAX_VALUE;
int m = word1.length(), n = word2.length();
int[][] dp = new int[m + 1][n + 1];
for (int i = 1; i <= m; i++) dp[i][0] = i;
for (int j = 1; j <= n; j++) dp[0][j] = j; for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) dp[i][j] = dp[i - 1][j - 1];
else dp[i][j] = 1 + Math.min(dp[i - 1][j - 1], Math.min(dp[i - 1][j], dp[i][j - 1]));
}
}
return dp[m][n];
}
}

一维DP:

跟Maximal Square一样,也是使用一个topLeft来代表左上方的元素。

public class Solution {
public int minDistance(String word1, String word2) {
if (word1 == null || word2 == null) return Integer.MAX_VALUE;
int m = word1.length(), n = word2.length();
if (m == 0) return n;
else if (n == 0) return m; int[] dp = new int[n + 1];
for (int j = 1; j <= n; j++) dp[j] = j;
int topLeft = 0; for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
int tmp = dp[j];
if (word1.charAt(i - 1) == word2.charAt(j - 1)) dp[j] = topLeft;
else dp[j] = 1 + Math.min(topLeft, Math.min(dp[j], dp[j - 1]));
topLeft = tmp;
}
dp[0] = i;
topLeft = i;
}
return dp[n];
}
}

Reference:

https://leetcode.com/discuss/10426/my-o-mn-time-and-o-n-space-solution-using-dp-with-explanation

http://www.cnblogs.com/springfor/p/3896167.html

https://leetcode.com/discuss/17997/my-accepted-java-solution

https://leetcode.com/discuss/20945/standard-dp-solution

https://leetcode.com/discuss/5138/good-pdf-on-edit-distance-problem-may-be-helpful

https://leetcode.com/discuss/43398/20ms-detailed-explained-c-solutions-o-n-space

http://web.stanford.edu/class/cs124/lec/med.pdf

https://en.wikipedia.org/wiki/Edit_distance

https://leetcode.com/discuss/64063/ac-python-212-ms-dp-solution-o-mn-time-o-n-space

https://leetcode.com/discuss/43398/20ms-detailed-explained-c-solutions-o-n-space

72. Edit Distance的更多相关文章

  1. 【Leetcode】72 Edit Distance

    72. Edit Distance Given two words word1 and word2, find the minimum number of steps required to conv ...

  2. 刷题72. Edit Distance

    一.题目说明 题目72. Edit Distance,计算将word1转换为word2最少需要的操作.操作包含:插入一个字符,删除一个字符,替换一个字符.本题难度为Hard! 二.我的解答 这个题目一 ...

  3. [LeetCode] 72. Edit Distance 编辑距离

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  4. leetCode 72.Edit Distance (编辑距离) 解题思路和方法

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  5. [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...

  6. 72. Edit Distance *HARD*

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  7. LeetCode - 72. Edit Distance

    最小编辑距离,动态规划经典题. Given two words word1 and word2, find the minimum number of steps required to conver ...

  8. 72. Edit Distance(困难,确实挺难的,但很经典,双序列DP问题)

    Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...

  9. 【一天一道LeetCode】#72. Edit Distance

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given t ...

随机推荐

  1. oracle中的存储过程例子

    用了两年Oracle还没写过存储过程,真是十分惭愧,从今天开始学习Oracle存储过程,完全零起点,争取每日一篇学习笔记,可能开始认识的不全面甚至有错误,但坚持下来一定会有收获. . 建立一个存储过程 ...

  2. String面试题

    //a b c 分别是怎么存储的, a和b a和c分别有什么区别// c和d的区别是什么 String a= "hello";String b= "hello" ...

  3. POJ 2315 最小费用最大流

    从1走到N然后从N走回来的最短路程是多少? 转换为费用流来建模. 1: /** 2: 因为e ==0 所以 pe[v] pe[v]^1 是两条相对应的边 3: E[pe[v]].c -= aug; E ...

  4. 指向const的指针和const指针

    1.指向const的指针:const int *p 或 int const *p 解释:p是一个指针,指向const int类型的常量:指针指向的内容为常量,因此不能改变*p的值,但指针p可以改变,指 ...

  5. SQL Server备份事务日志结尾(Tail)

    原文:http://blog.csdn.net/tjvictor/article/details/5256906   事务日志结尾经常提交数据库未备份的事务日志内容.基本上,每一次你执行事务日志备份时 ...

  6. Ext学习-基础组件介绍

    1.目标    学习对象获取,组件基础,事件模型以及学习ExtJS中的基础组件的应用. 2.内容   1.对象获取   2.组件原理以及基础   3.事件模型   4.常用组件的介绍 3.学习步骤 1 ...

  7. 给定一颗二叉搜索树,请找出其中的第k小的结点。例如, 5 / \ 3 7 /\ /\ 2 4 6 8 中,按结点数值大小顺序第三个结点的值为4。

    // ConsoleApplication2.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include "stdafx.h ...

  8. C#中两个日期类型相减得到天数

    protected int GetDuration(DateTime start, DateTime finish) { return (finish - start).Days; } 直接相减得到的 ...

  9. hdu 1166 树状数组 线段树入门

    点修改 区间求和 #include <cstdio> #include <cstdlib> #include <cmath> #include <map> ...

  10. Consumer Client Re-Design (翻译)

    注:0.9版本Kafka的一个重大改变就是consumer和producer API的重新设计. 这篇Kafka的文档大致介绍了对于consumer API重新设计时想要实现的功能.0.9版本的确实现 ...