InnoDB行存储的三个组成部分(说明: F字符表示列的数量)

名称(Name) 大小(Size)
Field Start Offsets (F*1) or (F*2) bytes
Extra Bytes 6 bytes
Field Contents 取决于内容

1: FIELD START OFFSETS

指在实际数据存储行中每一字段(entry,实际存储不只是包括列,还有额外信息)的位置偏移量信息列表,这个位置由原点(Origin)相对位置和下一个字段计算而来。该列表保存的行中每一字段的偏移信息为倒序的,也就是说行中第一字段信息在这个列表的最后。

举个例子:假设有三个列,第一个列的长度为1字节,第二个为2字节,第三个为4字节,这种情况下,保存三个列的偏移信息分别为[1,3(1+2),7(1+2+4)],列表倒序,转储的Field Start Offsets的信息应该为[07,03,01].

有两种的特殊复杂情况:

1:偏移量数字可能为一个或两个字节,一个字节最多允许长度为127,最高位bit用来保存是否为NULL,"Extra Bytes"部分说明了偏移量为一个字节还是两个字节。

2:偏移量可能有一个标志信息,剩下的字节空间包含两个段,指具体的内容。(可能这些内容并不在同一个页中,参考后面的分析)

当偏移量为一个字节时:

1 bit = NULL

7 bit, 实际的偏移信息

当偏移量为两个字节时:

1 bit = NULL

1 bit = 0 内容在同一个页中,= 1 内容在不同的页中

14 bits = 实际的偏移量,0 ~ 16383

2:EXTRA BYTES

Extra Bytes为6个字节

Name Size Description
info_bits: ?? ??
() 1 bit 未使用
() 1 bit 未使用
deleted_flag 1 bit 1:删除标志位(已删除)
min_rec_flag 1 bit 1: 预定义的最小记录
n_owned 4 bits 拥有的记录数量
heap_no 13 bits 堆块中索引的数据页序列编号
n_fields 10 bits 记录中的字段数量 1 to 1023
1byte_offs_flag 1 bit 1:Field Start Offsets为一个字节,否则为两个字节
next 16 bits 16 bits 下一个记录的指针(System Column #1)
TOTAL 48 bits ??

共48 bit,6个字节

如果需要通过字节读取这存储的记录,最关键的需要读取Extra Bytes 中的byte_offs_flag位信息,需要知道1表示偏移信息为一个字节,0表示两个字节

如果给定了一个相对原点(Origin),InnoDB获取记录开始遵循如下步骤:

-- X = n_fields,这个数字等于Field Start Offsets列表中的定义的数量

-- 如果byte_offs_flag = 0,X = X * 2,每个偏移量为两个字节表示的

-- X = X + 6,固定大小的Extra Bytes为6字节

-- 记录的开始位置当前的位置减去X

(参照FIELD CONTENTS)

3:FIELD CONTENTS

Field Contents部分包括了记录的所有数据,这些字段按照我们预定义的方式按顺序存储。

字段与字段没有任何标记,记录的结尾也没有任何标志。

实例:

-- 创建一张表

CREATE TABLE T
(FIELD1 VARCHAR(3), FIELD2 VARCHAR(3), FIELD3 VARCHAR(3))
Type=InnoDB;

需要知道的是,InnoDB下表中的每一行有6个字段,并不是3个,因为InnoDB在存储的内容前自动补充的3个列("system columns"),这些列分别为 行ID(row ID,该表未定义主键),事务ID(transaction ID), 回滚指针(rollback pointer)。

-- 为该表增加三条数据

INSERT INTO T VALUES ('PP', 'PP', 'PP');
INSERT INTO T VALUES ('Q', 'Q', 'Q');
INSERT INTO T VALUES ('R', NULL, NULL);

运行工具(Borland's TDUMP)查看二进制的事务文件信息(\mysql\data\ibdata1

Address Values in Hexadecimal

Values in ASCII

0D4280: 00 00 2D 00 84 4F 4F 4F 4F 4F 4F 4F 4F 4F 19 17

..-..OOOOOOOOO..

0D4290: 15 13 0C 06 00 00 78 0D 02 BF 00 00 00 00 04 21

......x........!

0D42A0: 00 00 00 00 09 2A 80 00 00 00 2D 00 84 50 50 50

.....*....-..PPP

0D42B0: 50 50 50 16 15 14 13 0C 06 00 00 80 0D 02 E1 00

PPP.............

0D42C0: 00 00 00 04 22 00 00 00 00 09 2B 80 00 00 00 2D

....".....+....-

0D42D0: 00 84 51 51 51 94 94 14 13 0C 06 00 00 88 0D 00

..QQQ...........

0D42E0: 74 00 00 00 00 04 23 00 00 00 00 09 2C 80 00 00

t.....#.....,...

0D42F0: 00 2D 00 84 52 00 00 00 00 00 00 00 00 00 00 00

.-..R...........

做一下格式处理,添加标记:

19 17 15 13 0C 06 Field Start Offsets /* First Row */
00 00 78 0D 02 BF Extra Bytes
00 00 00 00 04 21 System Column #1
00 00 00 00 09 2A System Column #2
80 00 00 00 2D 00 84 System Column #3
50 50 Field1 'PP'
50 50 Field2 'PP'
50 50 Field3 'PP' 16 15 14 13 0C 06 Field Start Offsets /* Second Row */
00 00 80 0D 02 E1 Extra Bytes
00 00 00 00 04 22 System Column #1
00 00 00 00 09 2B System Column #2
80 00 00 00 2D 00 84 System Column #3
51 Field1 'Q'
51 Field2 'Q'
51 Field3 'Q' 94 94 14 13 0C 06 Field Start Offsets /* Third Row */
00 00 88 0D 00 74 Extra Bytes
00 00 00 00 04 23 System Column #1
00 00 00 00 09 2C System Column #2
80 00 00 00 2D 00 84 System Column #3
52 Field1 'R'

-- "Field Start Offsets"

参照First Row,从Extra Bytes开始的7个字段,大小分别为6, 6, 7, 2, 2, 2,偏移信息指向了下一字段的开始位置,16进制表示下的数字06, 0c (6+6), 13 (6+6+7), 15 (6+6+7+2), 17 (6+6+7+2+2), 19 (6+6+7+2+2+2),倒序的Field Start Offsets值分别为:[19,17,15,13,0c,06]

-- "Extra Bytes"

参照First Row,Extra Bytes为[00 00 78 0D 02 BF],参照EXTRA BYTES读取跳过头21 bit读(n_fields),取10个bit,读取第三个字节最后三个个bit [000]和第四个字节0D[00001101]的7个bit [0000110],得出的6即为字段的数量(除去Extra Bytes),第四个字节0D[00001101]最后bit:1表示byte_offs_flag说明偏移量为1字节,最后的第5,6字节02 BF,指向下一行Second Row(System Column #1)的记录(02BF为0D42BF页内地址),下一记录指向了System Column #1,读取过程遵循EXTRA BYTES末的规则。

-- NULL列的表示

参照Third Row,FIELD2和FIELD3为NULL,因为byte_offs_flag为1,因此,在Field Start Offsets中[94 94 14 13 0C 06]每次读取1个字节可表示字段的偏移信息,这个字节最高位为NULL标记,14 13表示1个字节[52]的FIELD1值'R',94 14表示0字节的FIELD2值NULL(94最高位为1表示NULL,其余7 bit为14),94 94表示0字节的FIELD3值NULL。

MySQL Internal - InnoDB存储引擎(行结构)的更多相关文章

  1. mysql中InnoDB存储引擎的行锁和表锁

    Mysql的InnoDB存储引擎支持事务,默认是行锁.因为这个特性,所以数据库支持高并发,但是如果InnoDB更新数据的时候不是行锁,而是表锁的话,那么其并发性会大打折扣,而且也可能导致你的程序出错. ...

  2. MySQL数据库InnoDB存储引擎多版本控制(MVCC)实现原理分析

    文/何登成 导读:   来自网易研究院的MySQL内核技术研究人何登成,把MySQL数据库InnoDB存储引擎的多版本控制(简称:MVCC)实现原理,做了深入的研究与详细的文字图表分析,方便大家理解I ...

  3. MySQL数据库InnoDB存储引擎中的锁机制

    MySQL数据库InnoDB存储引擎中的锁机制    http://www.uml.org.cn/sjjm/201205302.asp   00 – 基本概念 当并发事务同时访问一个资源的时候,有可能 ...

  4. MySql中innodb存储引擎事务日志详解

    分析下MySql中innodb存储引擎是如何通过日志来实现事务的? Mysql会最大程度的使用缓存机制来提高数据库的访问效率,但是万一数据库发生断电,因为缓存的数据没有写入磁盘,导致缓存在内存中的数据 ...

  5. mysql之innodb存储引擎

    mysql之innodb存储引擎 innodb和myisam区别 1>.InnoDB支持事物,而MyISAM不支持事物 2>.InnoDB支持行级锁,而MyISAM支持表级锁 3>. ...

  6. MySQL数据库InnoDB存储引擎

    MySQL数据库InnoDB存储引擎Log漫游  http://blog.163.com/zihuan_xuan/blog/static/1287942432012366293667/

  7. mysql之innodb存储引擎---数据存储结构

    一.背景 1.1文件组织架构 首先看一下mysql数据系统涉及到的文件组织架构,如下图所示: msyql文件组织架构图 从图看出: 1.日志文件:slow.log(慢日志),error.log(错误日 ...

  8. 在MySQL的InnoDB存储引擎中count(*)函数的优化

    写这篇文章之前已经看过了很多数据库方面的优化内容,大部分都是加索引.使用事务.要什么select什么等等.然而,只是停留在阅读的层面上,很少有实践,因为没有遇到真实的项目,一切都是纸上谈兵.实践是检验 ...

  9. MySQL:InnoDB存储引擎的B+树索引算法

    很早之前,就从学校的图书馆借了MySQL技术内幕,InnoDB存储引擎这本书,但一直草草阅读,做的笔记也有些凌乱,趁着现在大四了,课程稍微少了一点,整理一下笔记,按照专题写一些,加深一下印象,不枉读了 ...

随机推荐

  1. java解析属性文件

    -----------------------解析属性文件----------------------------- /**   * 获取src下属性文件   * @param params   * ...

  2. javaScript中"=="和"==="运算符的区别

    相同点: 两个运算符均可用于比较两个值是否相等,可允许操作任意类型的操作数,如果操作数相等则返回true,否则返回false. 不同点: "==="运算符也称为严格相等运算符,它用 ...

  3. [中文版] 可视化 CSS References 文档

    本文分享了我将可视化 CSS References 文档翻译成中文版的介绍,翻译工作还在陆续进行中,供学习 CSS 参考. 1. 可视化 CSS References 文档介绍 许多 CSS 的文档都 ...

  4. AUPE学习第八章------进程控制

    每个进程都有一个非负整形表示的唯一进程ID. init进程是一号进程,是第一个用户态的进程.它负责内核启动以后启动一个unix系统, 它读取的配置文件一般在/etc/rc*./etc/inittab. ...

  5. 获取某几个分类下的前N条数据 mssql语句

    方案1: (SELECT top 10 *  FROM 表 where type=3  ) UNION ALL   (SELECT top 10 *  FROM 表 where type=4  )  ...

  6. android 简易定时器

    定时器 1.在android 应用开发当中,很多时候都要用到定时器,而要实现定时器更多的时候要用到两个类:Timer,和TimerTask 2.API对Timer的解释是:

  7. application与cache

    每个项目都有一些全局,常用的信息,而这些信息如果在每次使用时都载入,那必将耗费很大的资源,特别是对访问压力大的系统.因此,这个情况中,把这些全局信息放到缓存中是很必要的,放在缓存中可以使得数据能够很快 ...

  8. js 如何验证字符串里是否包含汉字?

    1.用正则表达式判断<input  type="text" id="name" placeholder="请输入用户名" value= ...

  9. Ehcache(05)——缓存的查询

    http://haohaoxuexi.iteye.com/blog/2117505 缓存的查询 目录 1.    使Cache可查询 1.1     基于Xml配置 1.2     基于代码的配置 2 ...

  10. 一种基于PTP 协议的局域网高精度时钟同步方法(转)

    原文地址 http://www.dzsc.com/data/html/2011-1-17/88338.html 1 引言 在分布式系统中, 常常需要一个全局时间, 用来确定系统中各种事件发生的先后.协 ...