Linux 内存布局
本文主要简介在X86体系结构下和在ARM体系结构下,Linux内存布局的概况,力求简单明了,不过多深入概念,多以图示的方式来记忆理解,一图胜万言。
X86体系结构
在X86体系结构下,物理内存地址一般从0x0000_0000开始,而Linux内核主要按照在物理地址0x0010_0000开始的地方,即物理地址1M以上的空间。那最开始的1M空间是用来干什么的呢?
考虑到通用的IBM-PC体系结构,最开始的1M空间由BIOS例程和映射ISA图形卡的内存,这块区域为了所有IBM兼容PC从640K到1M的物理地址,始终存在,但无法被操作系统使用。
主要内存布局如上图所示:
mmap映射区向下扩展,堆向上扩展,两者相对扩展,直到耗尽虚拟地址空间中的剩余区域。
BSS段用来存放程序中未初始化的全局变量,该段内容只记录数据所需空间大小,并不分配真实空间。
DATA段用来存放程序中已初始化的全局变量,为数据分配空间,数据具体值保持在目标文件中。
CODE段用来存放程序中执行代码的内存区域,通常为大小确定的只读段,包括只读常量、只读代码等。

ARM体系结构
以S3C2410为例子,假设物理内存为64M,映射到ARM的起始物理地址为【0x3000_0000~0x3200_0000】,这个由硬件接线决定。我们可以通过查看内核编译输出的System.map文件来了解内核虚拟地址空间布局,结果类似如下:

可以看出内核镜像大小为3.7M,虚拟地址空间起始地址为0xc000_0000(这是开启MMU之后的虚拟地址空间),在内核head.S文件中,有内核线性地址和物理地址的描述,见下图:

PAGE_OFFSET为0xC000_0000,为内核虚拟地址相对偏移(相对于0地址的偏移),PHYS_OFFSET为内核载入实际物理地址相对偏移,不同的硬件板子,ARM访问的内存物理地址不一样,这里以0x3000_0000(这由硬件接线决定)为假设。TEXT_OFFSET为0x0000_8000,为编译时指定的代码段偏移,所以,uboot最后启动内核的地址为内核代码指定的KERNEL_RAM_PADDR(0x3000_8000),这样才能正常运行,而内核的入口地址和载入地址,最好设置成一样。而uboot加载kernel的实际地址设置为0x3000_7fc0,比KERNEL_RAM_PADDR少64个字节,这可以避免拷贝内核,64个字节为uImage内核镜像针对uboot添加的特定头部信息。
从上面的检查宏可以看出,内核开始的物理地址,必须开始在0xXXXX_8000的地址空间。
swapper_pg_dir 为内核全局页表的起始地址,stext为内核的入口虚拟地址,因此,可以看出,全局页表占据16K的空间。
head.S文件的功能,主要获取处理器类型和机器类型信息,创建临时页表,然后开启MMU,并进入第一个C语言函数start_kernel。
更加详细的可以参见:
http://www.arm.linux.org.uk/developer/memory.txt
内核提供的内存访问接口
内核提供的所有接口都是以页为单位分配内存的,其中,最核心的函数为alloc_pages,其原型如下:
struct page * alloc_pages(unsigned int gfp_mask,unsigned int order)
该函数分配2^order个连续的物理页,并返回指向第一个页的指针。如果分配出错,返回NULL。其他的一些页分配接口。

1. kmalloc/kfree: 基于slab分配器的内存分配函数,支持分配大小32byte-128KB,分配的为物理地址连续的一段内存,使用GFP_KERNEL时,函数可能睡眠。使用GFP_ATOMIC时,函数不睡眠。
kzalloc:基于kmallc的,分配一段内核内存并且清零。
2.vmalloc/vfree:工作在内核虚拟空间的VMALLOC_START和VMALLOC_END所代表的vmalloc区,支持分配大内容,分配为逻辑地址连续的一段内存,速度慢,效率低,可能睡眠,映射的地址优先从ZONE_HIGHMEM分配.
3.利用slab分配器的高速缓存,使用kmem_cache_create和keme_cache_alloc这两个函数。/proc/slabinfo查看所有的kmem_cache缓存。 keme_cache_alloc 用于需要频繁分配和释放同一类型的数据结构对象,充分利用硬件缓存,提升系统性能。
相反的处理函数有kmem_cache_destory和kmem_cache_free
4.用于多处理器的per-CPU变量,核心思想是,通过为系统中每个处理器都分配一个CPU特定的变量副本,减少多处理器并发访问时的锁定操作,提高系统性能。
强烈推荐优秀参考链接:arm-linux启动过程
Linux 内存布局的更多相关文章
- linux 内存布局以及tlb更新的一些理解
问题: 1.内核线程是否有vma线性区? 2.单线程的一个进程,它修改了自己的页表,是否需要发送ipi来通知其他核更新tlb? 3.普通进程,在32位和64位,对应的线性区的最大地址能到多少? 在64 ...
- Linux内存布局
在上一篇博文里,我们已经看到Linux如何有效地利用80x86的分段和分页硬件单元把逻辑地址转换为线性地址,在由线性地址转换到物理地址.那么我们的应用程序如何使用这些逻辑地址,整个内存的地址布局又是怎 ...
- linux内存布局------深入理解计算机系统
- linux系统进程的内存布局
内存管理模块是操作系统的心脏:它对应用程序和系统管理非常重要.今后的几篇文章中,我将着眼于实际的内存问题,但也不避讳其中的技术内幕.由于不少概念是通用的,所以文中大部分例子取自32位x86平台的Lin ...
- linux内存管理解析1----linux物理,线性内存布局及页表的初始化
主要议题: 1分页,分段模式及实模式 2Linux分页 3linux内存线性地址空间布局及物理内存空间布局 4linux页表初始化及代码解析 1.1.1内存寻址和保护模式 在X86平台上,内存控制单元 ...
- [内存管理]linux X86_64处理器的内存布局图
linux X86 64位内存布局图
- Linux内存管理 (3)内核内存的布局图
专题:Linux内存管理专题 关键词:内核内存布局图.lowmem线性映射区.kernel image.ZONE_NORMAL.ZONE_HIGHMEM.swapper_pg_dir.fixmap.v ...
- Linux内存初始化(三) 内存布局
一.前言 同样的,本文是内存初始化文章的一份补充文档,希望能够通过这样的一份文档,细致的展示在初始化阶段,Linux 4.4.6内核如何从device tree中提取信息,完成内存布局的任务.具体的c ...
- Linux进程地址空间 && 进程内存布局[转]
一 进程空间分布概述 对于一个进程,其空间分布如下图所示: 程序段(Text):程序代码在内存中的映射,存放函数体的二进制代码. 初始化过的数据(Data):在程序运行初已经对变量进行初始 ...
随机推荐
- Linux VM子系统参数调整
Timesten数据库下的Linux page子系统参数调整 如果Timesten(TT)采用了Durablecommits或是share memory segment被lock的话,那么linux ...
- shell 编程中使用到得if语句内判断参数
http://blog.chinaunix.net/uid/21411227/cid-63616-list-1.html 1.判断文件类型 –b 当file存在并且是块文件时返回真 -c 当fil ...
- EF 预热
由于EF第一次加载比较慢,所以要对EF进行一次初始化的加载,类似第一次打开网页很慢,但第二次打开都很快了的原理一样:第一次把所有静态的图片和JS缓存到本地了:当第二次打开的时候都不需要再去下载这些东西 ...
- WPF 之 布局(三)
六.DockPanel DockPanel定义一个区域,在此区域中,您可以使子元素通过描点的形式排列,这些对象位于 Children 属性中.停靠面板其实就是在WinForm类似于Dock属性的元 素 ...
- C语言中将数字转换为字符串的方法
C语言提供了几个标准库函数,可以将任意类型(整型.长整型.浮点型等)的数字转换为字符串.以下是用itoa()函数将整数转换为字符串的一个例子: # include <stdio. h># ...
- ios -几种常见定时器
转自cocoachina 网友分享: http://mp.weixin.qq.com/s?__biz=MjM5OTM0MzIwMQ==&mid=206637839&idx=7& ...
- 沈逸老师PHP魔鬼特训笔记(6)--巫术与骨架
PHP最牛逼的特性之一除了懒人函数,还有一些魔法函数. 首先我们来认识下__tostring,通过一个巫术方法,我们吧实例转化过后的类,直接当字符串输出.结合我们前面所做的功能,我们在类里面加上这个函 ...
- iOS - UI - UITableView
1.UITableView 表格视图 服从数据源 - (UIView *)tableView:(UITableView *)tableView viewForHeaderInSection:(NSIn ...
- VS2013 添加文件头部注释模板
在看视频的时候发现,视频中每次新建一个类文件 都会自动生成一串 头部的注释:
- 统计机器学习(statistical machine learning)
组要组成部分:监督学习(supervised learning),非监督学习(unsupervised learning),半监督学习(semi-supervised learning),强化学习(r ...