1.题目描述

Say you have an array for which the ith element is the price of a given stock on day i.

 

Design an algorithm to find the maximum profit. You may complete at most two transactions.

 

Note:

You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

2.解法分析

限定了交易次数之后题目就需要我们略微思考一下了,由于有两次交易的机会,那么我们选定一个时间点ti,将此时间点作为两次交易的支点的话,必然有:

      t0….ti之内满足最佳交易原则,ti-tn天也满足最佳交易原则,那么这就是一个动态规划的策略了,于是有下面的代码:

 

class Solution {

public:

    int maxProfit(vector<int> &prices) {

        // Start typing your C/C++ solution below

        // DO NOT write int main() function

        if(prices.size() <=1)return 0;

        vector<int>::iterator iter;

 

    

        for(iter=prices.begin();iter!=prices.end()-1;++iter)

        {

            *iter = *(iter+1) - *iter;

        }

        

        prices.pop_back();

        

        vector<int>accum_forward;

        vector<int>accum_backward;

        

        int max = 0;

        int subMax = 0;

        

        for(iter=prices.begin();iter!=prices.end();++iter)

        {

            subMax += *iter;

            if(subMax > max)max=subMax;

            else

                if(subMax<0)subMax = 0;

                

            accum_forward.push_back(max);

        }

        

        vector<int>::reverse_iterator riter;

        

        max =0 ;

        subMax = 0;

        for(riter=prices.rbegin();riter!=prices.rend();++riter)

        {

            subMax +=*riter;

            if(subMax >max)max = subMax;

            else

                if(subMax<0)subMax=0;

                

            accum_backward.push_back(max);

        }

    

        max =0;

        int len = accum_forward.size();

        for(int i=0;i<len-1;++i)

        {

            if((accum_forward[i]+accum_backward[len-i-2])>max)    

                max = accum_forward[i]+accum_backward[len-i-2];

        }

        

        return max>accum_forward[len-1]?max:accum_forward[len-1];

        

    }

};

 

ps:做完题之后提交,发现老是AC不了,有个case总是解决不了,本来以为是自己代码写得有问题,检查了半天没发现错误,于是开始看别人怎么写,结果发现别人AC的代码也过不了,猜想可能系统还是做得不完善,应该是后台的线程相互干扰了,过了一段时间果然同样的代码又可以AC了。在这段过程中,看别人写的代码,发现了一个比我简洁一些的写法,虽然我么你的复杂度是一样的,但是此君代码量比我的小一点,以后学习学习,另外,一直不知道vector还可以预先分配大小,从这个代码里面也看到了,算是有所收获。附代码如下:

class Solution {

public:

    int maxProfit(vector<int> &prices) {

        // null check

        int len = prices.size();

        if (len==0) return 0;

 

        vector<int> historyProfit;

        vector<int> futureProfit;

        historyProfit.assign(len,0);

        futureProfit.assign(len,0);

        int valley = prices[0];

        int peak = prices[len-1];

        int maxProfit = 0;

 

        // forward, calculate max profit until this time

        for (int i = 0; i<len; ++i)

        {

            valley = min(valley,prices[i]);

            if(i>0)

            {

                historyProfit[i]=max(historyProfit[i-1],prices[i]-valley);

            }

        }

 

        // backward, calculate max profit from now, and the sum with history

        for (int i = len-1; i>=0; --i)

        {

            peak = max(peak, prices[i]);

            if (i<len-1)

            {

                futureProfit[i]=max(futureProfit[i+1],peak-prices[i]);

            }

            maxProfit = max(maxProfit,historyProfit[i]+futureProfit[i]);

        }

        return maxProfit;

    }

 

};

leetcode—Best Time to Buy and Sell stocks III的更多相关文章

  1. LeetCode: Best Time to Buy and Sell Stock III 解题报告

    Best Time to Buy and Sell Stock IIIQuestion SolutionSay you have an array for which the ith element ...

  2. [LeetCode] Best Time to Buy and Sell Stock III 买股票的最佳时间之三

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  3. [LeetCode] Best Time to Buy and Sell Stock III

    将Best Time to Buy and Sell Stock的如下思路用到此题目 思路1:第i天买入,能赚到的最大利润是多少呢?就是i + 1 ~ n天中最大的股价减去第i天的. 思路2:第i天买 ...

  4. LeetCode: Best Time to Buy and Sell Stock III [123]

    [称号] Say you have an array for which the ith element is the price of a given stock on day i. Design ...

  5. [Leetcode] Best time to buy and sell stock iii 买卖股票的最佳时机

    Say you have an array for which the i th element is the price of a given stock on day i. Design an a ...

  6. [leetcode]Best Time to Buy and Sell Stock III @ Python

    原题地址:https://oj.leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/ 题意: Say you have an array ...

  7. leetcode -- Best Time to Buy and Sell Stock III TODO

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  8. LeetCode——Best Time to Buy and Sell Stock III

    Description: Say you have an array for which the ith element is the price of a given stock on day i. ...

  9. LeetCode——Best Time to Buy and Sell Stock III (股票买卖时机问题3)

    问题: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...

随机推荐

  1. Debugging with GDB 用GDB调试多线程程序

    Debugging with GDB http://www.delorie.com/gnu/docs/gdb/gdb_25.html GDB调试多线程程序总结 一直对GDB多线程调试接触不多,最近因为 ...

  2. URAL 1146 Maximum Sum & HDU 1081 To The Max (DP)

    点我看题目 题意 : 给你一个n*n的矩阵,让你找一个子矩阵要求和最大. 思路 : 这个题都看了好多天了,一直不会做,今天娅楠美女给讲了,要转化成一维的,也就是说每一列存的是前几列的和,也就是说 0 ...

  3. linux samba.tar.gz安装和配置

    安装步骤: 1. tar -xzvf samba-3.5.10.tar.gz2. cd samba-3.5.103. cd source34. ./autogen.sh  如果出现:./autogen ...

  4. 多线程 (三)iOS中的锁

    锁的类别:互斥锁,递归锁,条件锁,自旋锁等 锁的实现方式:NSLock,NSRecursiveLock, NSConditionLock,@synchronized,GCD的信号量等 下面说一下常用的 ...

  5. jdbc操作mysql

    本文讲述2点: 一. jdbc 操作 MySQL .(封装一个JdbcUtils.java类,实现数据库表的增删改查) 1. 建立数据库连接 Class.forName(DRIVER); connec ...

  6. Android TabHost 动态修改图标或者动态改变标题

    那时客户需要实现在TabHost标题上动态显示从数据库获取的个数.起初这样思考的,从数据库 获取个数是非常简单,但是要把获取的个数显示在TabHost标题,思前想后,想用Handler来异步实现消息传 ...

  7. IMX51启动模式

    相关链接: http://blog.csdn.net/kickxxx/article/details/7236040 http://blog.csdn.net/evilcode/article/det ...

  8. 基于Struts2的用户登录程序

    基本步骤: 1.新建Java工程,File>New>Project>Web>Dynamic Web Project,并将工程命名为:Struts2_Demo 2.导入strut ...

  9. Ehcache和MemCached比较分析

    项目 Memcache Ehcache 分布式 不完全,集群默认不实现 支持 集群 可通过客户端实现 支持(默认是异步同步) 持久化 可通过第三方应用实现,如sina研发的memcachedb,将ca ...

  10. java适配器模式

    原文查看:http://www.cnblogs.com/java-my-life/archive/2012/04/13/2442795.html