leetcode—Best Time to Buy and Sell stocks III
1.题目描述
Say you have an array for which the ith element is the price of a given stock on day i.Design an algorithm to find the maximum profit. You may complete at most two transactions.Note:You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
2.解法分析
限定了交易次数之后题目就需要我们略微思考一下了,由于有两次交易的机会,那么我们选定一个时间点ti,将此时间点作为两次交易的支点的话,必然有:
t0….ti之内满足最佳交易原则,ti-tn天也满足最佳交易原则,那么这就是一个动态规划的策略了,于是有下面的代码:
class Solution {public:int maxProfit(vector<int> &prices) {// Start typing your C/C++ solution below// DO NOT write int main() functionif(prices.size() <=1)return 0;vector<int>::iterator iter;for(iter=prices.begin();iter!=prices.end()-1;++iter){*iter = *(iter+1) - *iter;}prices.pop_back();vector<int>accum_forward;vector<int>accum_backward;int max = 0;int subMax = 0;for(iter=prices.begin();iter!=prices.end();++iter){subMax += *iter;if(subMax > max)max=subMax;elseif(subMax<0)subMax = 0;accum_forward.push_back(max);}vector<int>::reverse_iterator riter;max =0 ;subMax = 0;for(riter=prices.rbegin();riter!=prices.rend();++riter){subMax +=*riter;if(subMax >max)max = subMax;elseif(subMax<0)subMax=0;accum_backward.push_back(max);}max =0;int len = accum_forward.size();for(int i=0;i<len-1;++i){if((accum_forward[i]+accum_backward[len-i-2])>max)max = accum_forward[i]+accum_backward[len-i-2];}return max>accum_forward[len-1]?max:accum_forward[len-1];}};
ps:做完题之后提交,发现老是AC不了,有个case总是解决不了,本来以为是自己代码写得有问题,检查了半天没发现错误,于是开始看别人怎么写,结果发现别人AC的代码也过不了,猜想可能系统还是做得不完善,应该是后台的线程相互干扰了,过了一段时间果然同样的代码又可以AC了。在这段过程中,看别人写的代码,发现了一个比我简洁一些的写法,虽然我么你的复杂度是一样的,但是此君代码量比我的小一点,以后学习学习,另外,一直不知道vector还可以预先分配大小,从这个代码里面也看到了,算是有所收获。附代码如下:
class Solution {public:int maxProfit(vector<int> &prices) {// null checkint len = prices.size();if (len==0) return 0;vector<int> historyProfit;vector<int> futureProfit;historyProfit.assign(len,0);futureProfit.assign(len,0);int valley = prices[0];int peak = prices[len-1];int maxProfit = 0;// forward, calculate max profit until this timefor (int i = 0; i<len; ++i){valley = min(valley,prices[i]);if(i>0){historyProfit[i]=max(historyProfit[i-1],prices[i]-valley);}}// backward, calculate max profit from now, and the sum with historyfor (int i = len-1; i>=0; --i){peak = max(peak, prices[i]);if (i<len-1){futureProfit[i]=max(futureProfit[i+1],peak-prices[i]);}maxProfit = max(maxProfit,historyProfit[i]+futureProfit[i]);}return maxProfit;}};
leetcode—Best Time to Buy and Sell stocks III的更多相关文章
- LeetCode: Best Time to Buy and Sell Stock III 解题报告
Best Time to Buy and Sell Stock IIIQuestion SolutionSay you have an array for which the ith element ...
- [LeetCode] Best Time to Buy and Sell Stock III 买股票的最佳时间之三
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- [LeetCode] Best Time to Buy and Sell Stock III
将Best Time to Buy and Sell Stock的如下思路用到此题目 思路1:第i天买入,能赚到的最大利润是多少呢?就是i + 1 ~ n天中最大的股价减去第i天的. 思路2:第i天买 ...
- LeetCode: Best Time to Buy and Sell Stock III [123]
[称号] Say you have an array for which the ith element is the price of a given stock on day i. Design ...
- [Leetcode] Best time to buy and sell stock iii 买卖股票的最佳时机
Say you have an array for which the i th element is the price of a given stock on day i. Design an a ...
- [leetcode]Best Time to Buy and Sell Stock III @ Python
原题地址:https://oj.leetcode.com/problems/best-time-to-buy-and-sell-stock-iii/ 题意: Say you have an array ...
- leetcode -- Best Time to Buy and Sell Stock III TODO
Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...
- LeetCode——Best Time to Buy and Sell Stock III
Description: Say you have an array for which the ith element is the price of a given stock on day i. ...
- LeetCode——Best Time to Buy and Sell Stock III (股票买卖时机问题3)
问题: Say you have an array for which the ith element is the price of a given stock on day i. Design a ...
随机推荐
- uva 10306
有点不同的完全背包问题 但思路还是一样的 /************************************************************************* > ...
- Unity3d + NGUI 的多分辨率适配(黑边)
原地址:http://www.2cto.com/kf/201310/250921.html 一.当下移动设备的主流分辨率(数据来自“腾讯分析移动设备屏幕分辨率分析报告”) 1.1 iOS设备的分辨率主 ...
- Python利用ConfigParser读取配置文件
http://www.2cto.com/kf/201108/100384.html #!/usr/bin/python # -*- coding:utf-8 -*- import ConfigPars ...
- 学点PYTHON基础的东东--数据结构,算法,设计模式---访问者模式
说实话,感觉不是特别多,可能没遇到过多场面, 所以对应用场景没感觉吧. 反正,各种模式就是把类的实例传来传去,久而久之,产生了一些规律...:) # 轮子,引擎, 车身这些定义好了都不需要变动 cla ...
- CKEditor在线编辑器增加一个自定义插件
CKEditor是一个非常优秀的在线编辑器,它的前身就是FCKEditor,CKEditor据官方说是重写了内核的,但功能和性能比FCKEditor更为强大和优越.记得07年的时候第一次接触FCKEd ...
- BZOJ 3925 ZJOI2015 地震后的幻想乡
假设我们用了边权前i小的边使得图连通,那么对答案的贡献为i/m+1 又因为期望的线性性质,我们只需要求用了i条边就可以了 不妨设g(S)(i)表示用了i条边使得点集S连通的概率 设f(S)(i)表示用 ...
- C++ eof()函数相关应用技巧分享
C++编程语言中的很多功能在我们的实际应用中起着非常大的作用.比如在对文件文本的操作上,就可以用多种方式来实现.在这里我们介绍的C++ eof()函数就是其中一个比较常用的基本函数. 在使用C/C++ ...
- POJ1328——Radar Installation
Radar Installation Description Assume the coasting is an infinite straight line. Land is in one side ...
- WINCE6.0+IMX515通过cfimager.exe烧录镜像文件
WINCE6.0+IMX515通过cfimager.exe烧录镜像文件 freescale提供了cfimager.exe工具,可在SD/MMC卡中烧录系统镜像文件和创建FAT文件,这样,我们可以不需要 ...
- General Ledger Useful SQL Scripts – Oracle Applications 11i
General Ledger Useful SQL Scripts – Oracle Applications 11i Contents GL Set of Books Configuration O ...