bzoj 2301 [HAOI2011]Problem b(莫比乌斯反演)
Description
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
Input
第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
Output
共n行,每行一个整数表示满足要求的数对(x,y)的个数
Sample Input
2 5 1 5 1
1 5 1 5 2
Sample Output
3
HINT
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
【思路】

【代码】
#include<cstdio>
#include<iostream>
using namespace std; typedef long long ll;
const int N = ; int n;
ll su[N],sz,np[N],mu[N]; void get_mu()
{
int i,j;
mu[]=;
for(int i=;i<N;i++) {
if(!np[i]) {
su[++sz]=i;
mu[i]=-;
}
for(int j=;j<=sz&&i*su[j]<N;j++) {
np[su[j]*i]=;
if(i%su[j]==) mu[i*su[j]]=;
else mu[i*su[j]]=-mu[i];
}
}
for(int i=;i<N;i++)
mu[i]+=mu[i-];
}
ll C(int m,int n,int k)
{
int i,last; ll res=;
n/=k,m/=k;
for(i=;i<=min(n,m);i=last+) {
last=min(n/(n/i),m/(m/i));
res+=(mu[last]-mu[i-])*(m/i)*(n/i);
}
return res;
} int main()
{
get_mu();
int T,a,b,c,d,k;
scanf("%d",&T);
while(T--) {
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("%d\n",C(b,d,k)-C(a-,d,k)-C(b,c-,k)+C(a-,c-,k));
}
return ;
}
bzoj 2301 [HAOI2011]Problem b(莫比乌斯反演)的更多相关文章
- Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...
- BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 1007 Solved: 415[Submit][ ...
- BZOJ.2301.[HAOI2011]Problem B(莫比乌斯反演 容斥)
[Update] 我好像现在都看不懂我当时在写什么了=-= \(Description\) 求\(\sum_{i=a}^b\sum_{j=c}^d[(i,j)=k]\) \(Solution\) 首先 ...
- BZOJ 2301 [HAOI2011]Problem b ——莫比乌斯反演
分成四块进行计算,这是显而易见的.(雾) 然后考虑计算$\sum_{i=1}^n|sum_{j=1}^m gcd(i,j)=k$ 首先可以把n,m/=k,就变成统计&i<=n,j< ...
- bzoj 2301: [HAOI2011]Problem b mobius反演 RE
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 设f(i)为在区间[1, n]和区间[1, m]中,gcd(x, y) = i的个数. 设F( ...
- BZOJ 2301 [HAOI2011]Problem b (分块 + 莫比乌斯反演)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 6519 Solved: 3026[Submit] ...
- BZOJ 2301: [HAOI2011]Problem b (莫比乌斯反演)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 436 Solved: 187[Submit][S ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- bzoj 2301: [HAOI2011]Problem b
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 3757 Solved: 1671 [Submit] ...
- BZOJ 2301: [HAOI2011]Problem b( 数论 )
和POI某道题是一样的... http://www.cnblogs.com/JSZX11556/p/4686674.html 只需要二维差分一下就行了. 时间复杂度O(MAXN + N^1.5) - ...
随机推荐
- 1016: [JSOI2008]最小生成树计数 - BZOJ
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- 原生js获取window高和宽
视口的宽和高 var pw = window.innerWidth, ph = window.innerHeight; if(typeof pw != "number"){ pw ...
- The 11th Zhejiang Provincial Collegiate Programming Contest->Problem G:G - Ternary Calculation
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3782 题意:把输入的三元运算用计算机运算出来. ; ci ...
- Samza文档翻译 : Comparison Introduction
http://samza.incubator.apache.org/learn/documentation/0.7.0/comparisons/introduction.html 这里有一些使得Sam ...
- JAVA面试题:equals()方法和== 区别
http://bbs.csdn.net/topics/390000725 总结: equals在没重写之前和==一样,重写之后,equals只要内容一样即为true equals跟==一般情况下是等价 ...
- HDU4651+数学公式
见Goolgle http://zh.wikipedia.org/zh-cn/%E6%95%B4%E6%95%B8%E5%88%86%E6%8B%86 /* 数学公式 ans[i]:i可以有ans[i ...
- 关于DataTables一些小结
最近项目中使用了DataTables,故小结了一下. 导入CSS文件<link rel="stylesheet" href="<%=base %>/js ...
- JavaScript动态操作style
1.易错:修改元素的样式不是设置class属性,而是className属性.class是JS的一个保留关键字. 2.易错:单独修改样式的属性使用"style.属性名"3.注意在cs ...
- C语言字节对齐
转自:http://blog.csdn.net/21aspnet/article/details/6729724 文章最后本人做了一幅图,一看就明白了,这个问题网上讲的不少,但是都没有把问题说透. 一 ...
- poj 1364 King(差分约束)
题目:http://poj.org/problem?id=1364 #include <iostream> #include <cstdio> #include <cst ...