【题意】给定一个N个节点M条边的网络流,求有多少条边,使得当增其中加任何一个边的容量后,整个网络的流将增加.

挺好的一道题,考察对网络流和增广路的理解。

【思路】

首先关键边一定是满流边。那么对于一个满流边<x,y>来说,如果残余网络中从起点到x和从y到终点都有路径可达的话,那么这条边的容量增加时,在残量网络上将会产生一条增广路,最大流的值一定会发生改变。

则算法如下:
求最大流,得到残余网络
枚举每条满流边,DFS判断是否分别从源点和到汇点可达,如果可达则加1。

#include
#include
#include
#include
#include
#include
#define MID(x,y) ((x+y)/2)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
const int MAXV = 505;
const int MAXE = 20005;
const int oo = 0x3fffffff;
struct node{
int u, v, flow;
int opp;
int next;
};
struct Dinic{
node arc[MAXE];
int vn, en, head[MAXV]; //vn点个数(包括源点汇点),en边个数
int cur[MAXV]; //当前弧
int q[MAXV]; //bfs建层次图时的队列
int path[MAXE], top; //存dfs当前最短路径的栈
int dep[MAXV]; //各节点层次
void init(int n){
vn = n;
en = 0;
mem(head, -1);
}
void insert_flow(int u, int v, int flow){
arc[en].u = u;
arc[en].v = v;
arc[en].flow = flow;
arc[en].opp = en + 1;
arc[en].next = head[u];
head[u] = en ++; arc[en].u = v;
arc[en].v = u;
arc[en].flow = 0; //反向弧
arc[en].opp = en - 1;
arc[en].next = head[v];
head[v] = en ++;
}
bool bfs(int s, int t){
mem(dep, -1);
int lq = 0, rq = 1;
dep[s] = 0;
q[lq] = s;
while(lq < rq){
int u = q[lq ++];
if (u == t){
return true;
}
for (int i = head[u]; i != -1; i = arc[i].next){
int v = arc[i].v;
if (dep[v] == -1 && arc[i].flow > 0){
dep[v] = dep[u] + 1;
q[rq ++] = v;
}
}
}
return false;
}
int solve(int s, int t){
int maxflow = 0;
while(bfs(s, t)){
int i, j;
for (i = 1; i <= vn; i ++) cur[i] = head[i];
for (i = s, top = 0;;){
if (i == t){
int mink;
int minflow = 0x3fffffff;
for (int k = 0; k < top; k ++)
if (minflow > arc[path[k]].flow){
minflow = arc[path[k]].flow;
mink = k;
}
for (int k = 0; k < top; k ++)
arc[path[k]].flow -= minflow, arc[arc[path[k]].opp].flow += minflow;
maxflow += minflow;
top = mink; //arc[mink]这条边流量变为0, 则直接回溯到该边的起点即可(这条边将不再包含在增广路内).
i = arc[path[top]].u;
}
for (j = cur[i]; j != -1; cur[i] = j = arc[j].next){
int v = arc[j].v;
if (arc[j].flow && dep[v] == dep[i] + 1)
break;
}
if (j != -1){
path[top ++] = j;
i = arc[j].v;
}
else{
if (top == 0) break;
dep[i] = -1;
i = arc[path[-- top]].u;
}
}
}
return maxflow;
}
}dinic;
bool vis[MAXV];
bool reach(int u, int p){
vis[u] = 1;
if (u == p)
return true;
for (int i = dinic.head[u]; i != -1; i = dinic.arc[i].next){
int v = dinic.arc[i].v;
if (vis[v] || dinic.arc[i].flow <= 0) continue;
if (reach(v, p))
return true;
}
return false;
}
int work(int n){
int res = 0;
for (int i = 0; i < dinic.en; i += 2){
if (dinic.arc[i].flow == 0){
mem(vis, 0);
int u = dinic.arc[i].u;
int v = dinic.arc[i].v;
if (reach(1, u) && reach(v, n)){
res ++;
}
}
}
return res;
}
int main(){
//freopen("test.in", "r", stdin);
//freopen("test.out", "w", stdout);
int n, m;
scanf("%d %d", &n, &m);
dinic.init(n);
for (int i = 0; i < m; i ++){
int u,v,w;
scanf("%d %d %d", &u, &v, &w);
dinic.insert_flow(u+1, v+1, w);
}
dinic.solve(1, n);
printf("%d\n", work(n));
return 0;
}

POJ 3204 Ikki's Story I-Road Reconstruction (网络流关键边)的更多相关文章

  1. POJ 3204 Ikki's Story I - Road Reconstruction

    Ikki's Story I - Road Reconstruction Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 7 ...

  2. POJ3204 Ikki's Story I - Road Reconstruction

    Ikki's Story I - Road Reconstruction Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 7 ...

  3. POJ3184 Ikki's Story I - Road Reconstruction(最大流)

    求一次最大流后,分别对所有满流的边的容量+1,然后看是否存在增广路. #include<cstdio> #include<cstring> #include<queue& ...

  4. poj 3204(最小割--关键割边)

    Ikki's Story I - Road Reconstruction Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 7 ...

  5. POJ 3207 Ikki's Story IV - Panda's Trick(2-sat问题)

    POJ 3207 Ikki's Story IV - Panda's Trick(2-sat问题) Description liympanda, one of Ikki's friend, likes ...

  6. POJ 3207 Ikki&#39;s Story IV - Panda&#39;s Trick(2-sat)

    POJ 3207 Ikki's Story IV - Panda's Trick id=3207" target="_blank" style=""& ...

  7. POJ3204 Ikki's Story - Road Reconstruction 网络流图的关键割边

    题目大意:一个有源有汇的城市,问最少增加城市中的多少道路可以增加源到汇上各个路径上可容纳的总车流量增加. 网络流关键割边集合指如果该边的容量增加,整个网络流图中的任意从原点到汇点的路径的流量便可增加. ...

  8. POJ 3207 Ikki's Story IV - Panda's Trick

    Ikki's Story IV - Panda's Trick Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 7296   ...

  9. poj 3207 Ikki's Story IV - Panda's Trick (2-SAT)

    http://poj.org/problem?id=3207 Ikki's Story IV - Panda's Trick Time Limit: 1000MS   Memory Limit: 13 ...

随机推荐

  1. 解决pxe网络批量安装部署linux遇到的问题和解决方法

    解决“出现Unable to retrieve 192.168.0.100/var/www/html/images/install.img错误” 分析:我们必须了解这个错误出现在哪个阶段才能正确找到错 ...

  2. js中的计时器

    在JS中做二级菜单时,被一个鼠标移出时隐藏的小问题困扰了很久. <script> function Menu(id){ var _this=this; this.obj=document. ...

  3. Oracle外部表的使用

    外部表可以像其它表一样,用select语句作查询.但不能做DML操作,不能建index,不接受约束.这是因为它不是以段的形式存于数据库中,只是以数据字典构造存在,指向一个或多个操作系统文件. 外部表的 ...

  4. You have new mail in /var/spool/mail/root 烦不烦你?

    http://blog.csdn.net/yx_l128125/article/details/7425182

  5. 【BZOJ1251】序列终结者

    Description 网上有许多题,就是给定一个序列,要你支持几种操作:A.B.C.D.一看另一道题,又是一个序列 要支持几种操作:D.C.B.A.尤其是我们这里的某人,出模拟试题,居然还出了一道这 ...

  6. Java中的break与continue区别

    break跳出当前循环执行循环下面的程序, 如果break出现在嵌套循环的内层循环, 则break语句只会跳出当前层的循环; 当程序执行到continue时时, 则跳过本次循环程序重新回到循环开始继续 ...

  7. Linux:crontab命令学习

    一.crond简介 crond是linux下用来周期性的执行某种任务或等待处理某些事件的一个守护进程,与windows下的计划任务类似,当安装完成操作系统后,默认会安装此服务工具,并且会自动启动cro ...

  8. c++ deque 双端队列

    双端队列: 函数 描述 c.assign(beg,end)c.assign(n,elem)  将[beg; end)区间中的数据赋值给c.将n个elem的拷贝赋值给c. c.at(idx)  传回索引 ...

  9. js添加创建节点和合并节点

    var _div = document.createElement("div"), //创建节点 txt1 = document.createTextNode("123& ...

  10. BZOJ 3160 万径人踪灭 解题报告

    这个题感觉很神呀.将 FFT 和 Manacher 有机结合在了一起. 首先我们不管那个 “不能连续” 的条件,那么我们就可以求出有多少对字母关于某一条直线对称,然后记 $T_i$ 为关于直线 $i$ ...