Calculating a bearing between points in location-aware apps
https://software.intel.com/en-us/blogs/2012/11/30/calculating-a-bearing-between-points-in-location-aware-apps
Submitted by John Mechalas (... on Fri, 11/30/2012 - 08:37
Earlier this week I wrote about how to calculate the distance between two points in a location-aware app. Today, I am going to discuss a related topic: how to calculate the bearing between two points.
Like the shortest-distance problem, the bearing between two points on the globe is calculated using the great circle arc that connects them. With the exception of lines of latitude and longitude, great circle arcs do not follow a constant direction relative to true north and this means that as you travel along the arc your heading will vary.
This is made clear in the figure below, which is a gnomonic projection of the earth, showing our route from Portland to London (the gnomonic projection has a very special property: straight lines on the map correspond to great circle arcs). As you can see, the direction of travel changes along the path. The initial bearing, or forward azimuth, is about 33.6° but the final bearing as we approach London is about 141.5°.
As you travel along a great circle route your bearing to your destination changes. The dotted lines represent the direction of true north relative to the starting and ending points.
To calculate the initial bearing bearing we use the following formula. Note the use of the two-argument form of the arctangent, atan2(y,x), which ensures that the resulting angle is in the correct quadrant:
Θ = atan2( sin(Δλ) * cos(Φ2), cos(Φ1) * sin (Φ2) * cos(Δλ) )
This function will return the angle in radians from -π to π but what we want is an angle in degrees from 0 to 360. To accomplish this, we convert to degrees, add 360, and take the modulo 360:
Θd = ( Θ * 180 / π + 360 ) % 360
To get the final bearing, you reverse the latitudes and longitudes, and then take the angle that is in the opposite direction (180 degrees around).
Unlike our great circle distance calculation, the bearing calculation makes use of atan and it contains a singularity: when the two points converge, the angle becomes undefined. This makes perfect sense in the physical world, as if the source and the destination are exactly the same then there is no bearing between them. In practice, rounding errors would probably prevent a perfect equality from occurring, but it would still be good form to assume the points are coincident if their distance is below a threshold distance of a meter or two.
Code
Below are some code snippets that can be used to calculate the bearing between two points. You pass the latitude and longitude (in decimal degrees) for the first point as lat1 and long1, and for the second point in lat2 and long2.
For Windows developers, here is an implementation in C#:
class GreatCircleBearing
{
static Double degToRad = Math.PI / 180.0; static public Double initial (Double lat1, Double long1, Double lat2, Double long2)
{
return (_bearing(lat1, long1, lat2, long2) + 360.0) % ;
} static public Double final(Double lat1, Double long1, Double lat2, Double long2)
{
return (_bearing(lat2, long2, lat1, long1) + 180.0) % ;
} static private Double _bearing(Double lat1, Double long1, Double lat2, Double long2)
{
Double phi1 = lat1 * degToRad;
Double phi2 = lat2 * degToRad;
Double lam1 = long1 * degToRad;
Double lam2 = long2 * degToRad; return Math.Atan2(Math.Sin(lam2-lam1)*Math.Cos(phi2),
Math.Cos(phi1)*Math.Sin(phi2) - Math.Sin(phi1)*Math.Cos(phi2)*Math.Cos(lam2-lam1)
) * /Math.PI;
}
}
And in Javascript:
function bearingInitial (lat1, long1, lat2, long2)
{
return (bearingDegrees(lat1, long1, lat2, long2) + 360) % 360;
} function bearingFinal(lat1, long1, lat2, long2) {
return (bearingDegrees(lat2, long2, lat1, long1) + 180) % 360;
} function bearingDegrees (lat1, long1, lat2, long2)
{
var degToRad= Math.PI/180.0; var phi1= lat1 * degToRad;
var phi2= lat2 * degToRad;
var lam1= long1 * degToRad;
var lam2= long2 * degToRad; return Math.atan2(Math.sin(lam2-lam1) * Math.cos(phi2),
Math.cos(phi1)*Math.sin(phi2) - Math.sin(phi1)*Math.cos(phi2)*Math.cos(lam2-lam1)
) * 180/Math.PI;
}
And for Android developers, an implementation in Java:
class GreatCircleBearing
{
static public double initial (double lat1, double long1, double lat2, double long2)
{
return (_bearing(lat1, long1, lat2, long2) + 360.0) % 360;
} static public double final(double lat1, double long1, double lat2, double long2)
{
return (_bearing(lat2, long2, lat1, long1) + 180.0) % 360;
} static private double _bearing(double lat1, double long1, double lat2, double long2)
{
static double degToRad = Math.PI / 180.0;
double phi1 = lat1 * degToRad;
double phi2 = lat2 * degToRad;
double lam1 = long1 * degToRad;
double lam2 = long2 * degToRad; return Math.atan2(Math.sin(lam2-lam1)*Math.cos(phi2),
Math.cos(phi1)*Math.sin(phi2) - Math.sin(phi1)*Math.cos(phi2)*Math.cos(lam2-lam1)
) * 180/Math.PI;
}
}
As with our distance calculations, the assumption behind these formulas is a spherical earth. This is sufficiently accurate for casual use but scientific applications will need a more sophisticated model.
Calculating a bearing between points in location-aware apps的更多相关文章
- How To Start Building Spatially Aware Apps With Google’s Project Tango
How To Start Building Spatially Aware Apps With Google’s Project Tango “Tango can enable a whole new ...
- (转) [it-ebooks]电子书列表
[it-ebooks]电子书列表 [2014]: Learning Objective-C by Developing iPhone Games || Leverage Xcode and Obj ...
- spring boot上传文件错误The temporary upload location [/tmp/tomcat.5260880110861696164.8090/work/Tomcat/localhost/ROOT] is not valid
参考了:https://www.jianshu.com/p/cfbbc0bb0b84 再次感谢,但还是有些调整 一.在zuul服务中加入两个配置参数(location: /data/apps/temp ...
- Netron开发快速上手(一):GraphControl,Shape,Connector和Connection
版权所有,引用请注明出处:<<http://www.cnblogs.com/dragon/p/5203663.html >> 本文所用示例下载FlowChart.zip 一个用 ...
- infoq - neo4j graph db
My name is Charles Humble and I am here at QCon New York 2014 with Ian Robinson. Ian, can you introd ...
- How parse REST service JSON response
1. get JSON responses and go to : http://json2csharp.com/ 2. write data contracts using C# All class ...
- Unsupervised Classification - Sprawl Classification Algorithm
Idea Points (data) in same cluster are near each others, or are connected by each others. So: For a ...
- PhoneGap API Documentation API Reference
API Reference-API参考 Accelerometer-加速度计 Tap into the device's motion sensor.-点击进入该设备的运动传感器. Camera-相机 ...
- Upgrade Guide
Upgrade Guide This guide will point out the key points to be aware of when upgrading to version 3. A ...
随机推荐
- 关于imx6核心板qt系统U盘挂载
在使用imx6核心板开发的时候,程序写到U盘,想通过U盘在板子上运行程序,U盘插到板子上后在minicom中有信息显示,但是无法找到挂载文件,/dev和/mnt下都没有找到相应的文件.后来百度后发现U ...
- MySQL学习笔记二
Ø function 函数 函数的作用比较大,一般多用在select查询语句和where条件语句之后.按照函数返回的结果, 可以分为:多行函数和单行函数:所谓的单行函数就是将每条数据进行独立的计算,然 ...
- 函数buf_page_hash_get_low
/******************************************************************//** Returns the control block of ...
- JAVA调用易信接口向指定好友推送消息(一)背景需求
众所周知,中国电信内部一直使用易信群进行交流 各种工作交流都在易信群里面沟通 包括投诉处理,障碍报修,拍照上传 最重要的就是每天甚至每个时点的指标完成情况的通报 所以只能用4个字来形容 String ...
- bzoj2829
裸题,直接上凸包,然后加上一个圆周即可 只是在这之前没写过旋转而已 const pi=3.14159265358979323; eps=1e-8; type point=record x,y:doub ...
- android-async-http
安装 http://blog.csdn.net/wangwei_cq/article/details/9453345 包内的一些基本的参数 http://www.cnblogs.com/manuose ...
- 使用Spring时遇到的bug及解决
1.myeclipse中Spring 不给提示 解决:(1)window – preferences – myeclipse – files and editors – xml – xml catal ...
- 如何在Asp.Net WebApi接口中,验证请求参数中是否携带token标识!
[BasicAuthentication] public abstract class ApiControllerBase : ApiController { #region Gloal Proper ...
- buildroot linux filesystem 初探
/****************************************************************************** * buildroot linux fi ...
- I.MX6 Power off register hacking
/*********************************************************************** * I.MX6 Power off register ...
