Calculating a bearing between points in location-aware apps
https://software.intel.com/en-us/blogs/2012/11/30/calculating-a-bearing-between-points-in-location-aware-apps
Submitted by John Mechalas (... on Fri, 11/30/2012 - 08:37
Earlier this week I wrote about how to calculate the distance between two points in a location-aware app. Today, I am going to discuss a related topic: how to calculate the bearing between two points.
Like the shortest-distance problem, the bearing between two points on the globe is calculated using the great circle arc that connects them. With the exception of lines of latitude and longitude, great circle arcs do not follow a constant direction relative to true north and this means that as you travel along the arc your heading will vary.
This is made clear in the figure below, which is a gnomonic projection of the earth, showing our route from Portland to London (the gnomonic projection has a very special property: straight lines on the map correspond to great circle arcs). As you can see, the direction of travel changes along the path. The initial bearing, or forward azimuth, is about 33.6° but the final bearing as we approach London is about 141.5°.
As you travel along a great circle route your bearing to your destination changes. The dotted lines represent the direction of true north relative to the starting and ending points.
To calculate the initial bearing bearing we use the following formula. Note the use of the two-argument form of the arctangent, atan2(y,x), which ensures that the resulting angle is in the correct quadrant:
Θ = atan2( sin(Δλ) * cos(Φ2), cos(Φ1) * sin (Φ2) * cos(Δλ) )
This function will return the angle in radians from -π to π but what we want is an angle in degrees from 0 to 360. To accomplish this, we convert to degrees, add 360, and take the modulo 360:
Θd = ( Θ * 180 / π + 360 ) % 360
To get the final bearing, you reverse the latitudes and longitudes, and then take the angle that is in the opposite direction (180 degrees around).
Unlike our great circle distance calculation, the bearing calculation makes use of atan and it contains a singularity: when the two points converge, the angle becomes undefined. This makes perfect sense in the physical world, as if the source and the destination are exactly the same then there is no bearing between them. In practice, rounding errors would probably prevent a perfect equality from occurring, but it would still be good form to assume the points are coincident if their distance is below a threshold distance of a meter or two.
Code
Below are some code snippets that can be used to calculate the bearing between two points. You pass the latitude and longitude (in decimal degrees) for the first point as lat1 and long1, and for the second point in lat2 and long2.
For Windows developers, here is an implementation in C#:
class GreatCircleBearing
{
static Double degToRad = Math.PI / 180.0; static public Double initial (Double lat1, Double long1, Double lat2, Double long2)
{
return (_bearing(lat1, long1, lat2, long2) + 360.0) % ;
} static public Double final(Double lat1, Double long1, Double lat2, Double long2)
{
return (_bearing(lat2, long2, lat1, long1) + 180.0) % ;
} static private Double _bearing(Double lat1, Double long1, Double lat2, Double long2)
{
Double phi1 = lat1 * degToRad;
Double phi2 = lat2 * degToRad;
Double lam1 = long1 * degToRad;
Double lam2 = long2 * degToRad; return Math.Atan2(Math.Sin(lam2-lam1)*Math.Cos(phi2),
Math.Cos(phi1)*Math.Sin(phi2) - Math.Sin(phi1)*Math.Cos(phi2)*Math.Cos(lam2-lam1)
) * /Math.PI;
}
}
And in Javascript:
function bearingInitial (lat1, long1, lat2, long2)
{
return (bearingDegrees(lat1, long1, lat2, long2) + 360) % 360;
} function bearingFinal(lat1, long1, lat2, long2) {
return (bearingDegrees(lat2, long2, lat1, long1) + 180) % 360;
} function bearingDegrees (lat1, long1, lat2, long2)
{
var degToRad= Math.PI/180.0; var phi1= lat1 * degToRad;
var phi2= lat2 * degToRad;
var lam1= long1 * degToRad;
var lam2= long2 * degToRad; return Math.atan2(Math.sin(lam2-lam1) * Math.cos(phi2),
Math.cos(phi1)*Math.sin(phi2) - Math.sin(phi1)*Math.cos(phi2)*Math.cos(lam2-lam1)
) * 180/Math.PI;
}
And for Android developers, an implementation in Java:
class GreatCircleBearing
{
static public double initial (double lat1, double long1, double lat2, double long2)
{
return (_bearing(lat1, long1, lat2, long2) + 360.0) % 360;
} static public double final(double lat1, double long1, double lat2, double long2)
{
return (_bearing(lat2, long2, lat1, long1) + 180.0) % 360;
} static private double _bearing(double lat1, double long1, double lat2, double long2)
{
static double degToRad = Math.PI / 180.0;
double phi1 = lat1 * degToRad;
double phi2 = lat2 * degToRad;
double lam1 = long1 * degToRad;
double lam2 = long2 * degToRad; return Math.atan2(Math.sin(lam2-lam1)*Math.cos(phi2),
Math.cos(phi1)*Math.sin(phi2) - Math.sin(phi1)*Math.cos(phi2)*Math.cos(lam2-lam1)
) * 180/Math.PI;
}
}
As with our distance calculations, the assumption behind these formulas is a spherical earth. This is sufficiently accurate for casual use but scientific applications will need a more sophisticated model.
Calculating a bearing between points in location-aware apps的更多相关文章
- How To Start Building Spatially Aware Apps With Google’s Project Tango
How To Start Building Spatially Aware Apps With Google’s Project Tango “Tango can enable a whole new ...
- (转) [it-ebooks]电子书列表
[it-ebooks]电子书列表 [2014]: Learning Objective-C by Developing iPhone Games || Leverage Xcode and Obj ...
- spring boot上传文件错误The temporary upload location [/tmp/tomcat.5260880110861696164.8090/work/Tomcat/localhost/ROOT] is not valid
参考了:https://www.jianshu.com/p/cfbbc0bb0b84 再次感谢,但还是有些调整 一.在zuul服务中加入两个配置参数(location: /data/apps/temp ...
- Netron开发快速上手(一):GraphControl,Shape,Connector和Connection
版权所有,引用请注明出处:<<http://www.cnblogs.com/dragon/p/5203663.html >> 本文所用示例下载FlowChart.zip 一个用 ...
- infoq - neo4j graph db
My name is Charles Humble and I am here at QCon New York 2014 with Ian Robinson. Ian, can you introd ...
- How parse REST service JSON response
1. get JSON responses and go to : http://json2csharp.com/ 2. write data contracts using C# All class ...
- Unsupervised Classification - Sprawl Classification Algorithm
Idea Points (data) in same cluster are near each others, or are connected by each others. So: For a ...
- PhoneGap API Documentation API Reference
API Reference-API参考 Accelerometer-加速度计 Tap into the device's motion sensor.-点击进入该设备的运动传感器. Camera-相机 ...
- Upgrade Guide
Upgrade Guide This guide will point out the key points to be aware of when upgrading to version 3. A ...
随机推荐
- OAuth2.0和SSO授权的区别
OAuth2.0和SSO授权 一.OAuth2.0授权协议 一种安全的登陆协议,用户提交的账户密码不提交到本APP,而是提交到授权服务器,待服务器确认后,返回本APP一个访问令牌,本APP即可用该 ...
- fedora如何设置上网
设置方法如下:第一步:激活网卡.Fedora Linux系统装好后默认的网卡是eth0,用下面的命令将这块网卡激活.# ifconfig eth0 up.第二步:设置网卡进入系统时启动 .想要每次开机 ...
- BZOJ 2154 Crash的数字表格
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2154 题意: 思路: i64 mou[N]; void init(int N){ ...
- Python3 学习第三弹:异常情况如何处理?
python 的处理错误的方式: 1> 断言 assert condition 相当于 if not condition: crash program 断言设置的目的就是因为与其让程序晚点崩溃, ...
- 函数fil_io
/********************************************************************//** Reads or writes data. This ...
- Repeater 控件 当数据源没有数据的时候显示 暂无数据 的两种方式
第一种:现在前台给Repeater控件外面的div加一个runat=”server” 然后在cs后台判断数据源是否为空, 是的话就修改这个前台div的InnerText或者是InnerHtml 即可 ...
- mysql if 和 case when 用法 多个when情况用一个语句 存储过程
在实际开发中,经常会用到 if 和 case when的用法,记录一下,以后可以用得到. DELIMITER $$ USE `数据库`$$ DROPPROCEDUREIFEXISTS `GetNoti ...
- HDU 1150 Machine Schedule (最小覆盖,匈牙利算法)
题意: 有两台不同机器A和B,他们分别拥有各种运行模式1~n和1~m.现有一些job,需要在某模式下才能完成,job1在A和B上需要的工作模式又可能会不一样.两台机器一开始处于0模式,可以切换模式,但 ...
- atoi&itoa
char* itoa(int num,char*str,int radix) {/*索引表*/ char index[]="0123456789ABCDEFGHIJKLMNOPQRSTUVW ...
- 应用emailAutoComplete.js来自动显示邮箱后缀列表
我们经常有邮箱的人都特别清楚,在输入我们的邮箱时,会自动显示出邮箱后缀列表,这个用户体验是不错的. 操作据悉——当我们输入文字时,会自动有个邮箱后缀名的列表. 而我这边的代码是,应用jque ...
