Likehood函数即似然函数,是概率统计中经常用到的一种函数,其原理网上很容易找到,这里就不讲了。这篇博文主要讲解Likelihood对回归模型的Probabilistic interpretation。

在我们的回归模型中由于其他因素的影响我们的预测函数为:

其中  为影响预测的其他因素或者说噪声,我们假设这些噪声IID,我们知道随机独立同分布的噪声服从Gaussian distribution,则:

This implies that:

那么现在的问题转换为这样的:Given X (the design matrix, which contains all the x(i)’s) and θ, what is the distribution of the y(i)’s?  怎样来解决这个问题,我们想到了概率论里面的最大似然函数(Maximum likelihood),极大似然函数就是寻求参数的估计值 使得在给定的样本下,联合概率达到最大。其求解过程是这样的,令:

The principal of maximum likelihood says that we should should choose θ so as to make the data as high probability as possible. I.e., we should choose θ
to maximize L(θ). Instead of maximizing L(θ), we can also maximize any strictly increasing function of L(θ). In particular, the derivations will be a bit simpler if we instead maximize the log likelihood ℓ(θ):

Hence,我们只要minimizing 式子 就可以minimizing ,到这里大家看这个式子就可以知道了 Linear Regression中的cost函数的由来了吧。所以说数学这东西真的是奥妙无穷,世界上任何想当然的东西都可以用数学来证明,大家好好领会吧!!

对cost函数的概率解释的更多相关文章

  1. loss函数和cost函数

    loss函数指单个样本的预测值和真值的偏差 cost函数指整体样本的预测值和真值的偏差

  2. Logistic回归Cost函数和J(θ)的推导(二)----梯度下降算法求解最小值

    前言 在上一篇随笔里,我们讲了Logistic回归cost函数的推导过程.接下来的算法求解使用如下的cost函数形式: 简单回顾一下几个变量的含义: 表1 cost函数解释 x(i) 每个样本数据点在 ...

  3. Logistic回归Cost函数和J(θ)的推导----Andrew Ng【machine learning】公开课

    最近翻Peter Harrington的<机器学习实战>,看到Logistic回归那一章有点小的疑问. 作者在简单介绍Logistic回归的原理后,立即给出了梯度上升算法的code:从算法 ...

  4. 寻找cost函数最小值:梯度下降与最小二乘法

    Editted by MarkDown 寻找cost函数最小值:梯度下降与最小二乘法 参考:最小二乘法小结--刘建平 背景: 目标函数 = Σ(观测值-理论值)2 观测值就是我们的多组样本,理论值就是 ...

  5. NLR:利用非线性回归,梯度下降法求出学习参数θ,进而求得Cost函数最优值——Jason niu

    import numpy as np import random def genData(numPoints,bias,variance): x = np.zeros(shape=(numPoints ...

  6. 深入理解javascript函数进阶系列第二篇——函数柯里化

    前面的话 函数柯里化currying的概念最早由俄国数学家Moses Schönfinkel发明,而后由著名的数理逻辑学家Haskell Curry将其丰富和发展,currying由此得名.本文将详细 ...

  7. 《前端之路》之 JavaScript 高级技巧、高阶函数(一)

    目录 一.高级函数 1-1 安全的类型检测 1-2 作用域安全的构造函数 1-3 惰性载入函数 1-4 函数绑定 1-5 函数柯里化 1-6 反函数柯里化 一.高级函数 1-1 安全的类型检测 想到类 ...

  8. tf 常用函数 28原则

    一个tensorflow图由以下几部分组成: 占位符变量(Placeholder)用来改变图的输入. 模型变量(Model)将会被优化,使得模型表现得更好. 模型本质上就是一些数学函数,它根据Plac ...

  9. 转悠望南山 Python闲谈(二)聊聊最小二乘法以及leastsq函数

      1 最小二乘法概述 自从开始做毕设以来,发现自己无时无刻不在接触最小二乘法.从求解线性透视图中的消失点,m元n次函数的拟合,包括后来学到的神经网络,其思想归根结底全都是最小二乘法. 1-1 “多线 ...

随机推荐

  1. WPF 绑定二(绑定指定的字符串)

    xaml: <Window x:Class="WpfApplication1.Window2" xmlns="http://schemas.microsoft.co ...

  2. Nginx+Center OS 7.2 开机启动设置(转载)

    centos 7以上是用Systemd进行系统初始化的,Systemd 是 Linux 系统中最新的初始化系统(init),它主要的设计目标是克服 sysvinit 固有的缺点,提高系统的启动速度.关 ...

  3. 扩展 delphi 线程 使之传递参数.

    新delphi的线程TThread有了CreateAnonymousThread方法,如果再为它加一个可传递的参数不就更好了吗?代码如下: TAnonymousThreadX<T> = c ...

  4. Optimize date2str function

    /*************************************************** Created Date: 19 Jul 2013 Created By: Jimmy Xie ...

  5. 小课堂Week11 会说话的代码

    小课堂Week11 会说话的代码 今天主要讨论下,在编码过程中和"命名"相关的问题.因为命名方法比较自由,如果要提高可读性,我们需要尽量使其符合正规的英文语法习惯. 变量/属性 通 ...

  6. Microsoft .NET Framework 3.5 for Windowns Server2012R2 GUI

    图形化安装,需要安装盘,不需要网络连接

  7. Linux C C语言库的创建和调用

    C语言库的创建和调用 简介: 假如,你有一个庞大的工程,代码量达到数百兆甚至是数G,你经常会遇到好多重复或常用的地方.每次使用到这些地方时如果都重新写一份基本相同的代码,这当然可以,不过这样会大大地降 ...

  8. oracle 删除用户,表空间;循环删除表

    select * from dba_tablespaces 说明:查看所有表空间 ----------------------------------------------------------- ...

  9. 3244: [Noi2013]树的计数 - BZOJ

    Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...

  10. IOS 后台运行

    默认情况下,当app被按home键退出后,app仅有最多5秒钟的时候做一些保存或清理资源的工作.但是应用可以调用UIApplication的beginBackgroundTaskWithExpirat ...