题目链接:

http://www.codeforces.com/contest/629/problem/E

题解:

树形dp。

siz[x]为x这颗子树的节点个数(包括x自己)

dep[x]表示x这个节点的深度,从1开始(其实从什么开始都可以,我们这里用到的只是相对距离)

对于查询u,v,总共有三种情况:

1、u为公共祖先

设x为(u,v)链上u的儿子,则我们知道新边只能从非x子树的点(n-siz[x]连到以v为根的子树上的点(siz[v])

则新边的总条数为(n-siz[x])*siz[v]

现在用树形dp(跑两趟,树形dp的常见用法)可以求出u到(n-siz[x])这些点的距离的和(sd1),以及v到siz[v]这些点的距离的和(sd2)

且(u,v)这条链的长度为Len=dep[u]+dep[v]-2*dep[Lca(u,v)];

组合数学一下,那么答案就是:ans=(sd1*siz[v]+sd2*(n-siz[x])+(n-siz[x])*siz[v]+Len*(n-siz[x])*siz[v])/((n-siz[x])*siz[v])

2、v为公共祖先

同上

3、u,v都不是公共祖先

比上面的更一般化了,把对象(n-siz[x])变成siz[v]就可以了:

ans=(sd1*siz[v]+sd2*siz[u]+siz[u]*siz[v]+Len*siz[u]*siz[v])/(siz[u]*siz[v])

#pragma comment(linker, "/STACK:102400000,102400000")
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std; typedef long long LL;
const int maxn = +;
const int maxm = ; int n, m; vector<int> G[maxn]; int siz[maxn], dep[maxn],lca[maxn][maxm];
LL sdown[maxn],sall[maxn];
void dfs(int u,int fa,int d) {
dep[u] = d, siz[u] = , sdown[u] = ;
lca[u][] = fa;
for (int i = ; i < maxm; i++) {
int f = lca[u][i - ];
lca[u][i] = lca[f][i - ];
}
for (int i = ; i < G[u].size(); i++) {
int v = G[u][i];
if (v == fa) continue;
dfs(v, u, d + );
siz[u] += siz[v];
sdown[u] += siz[v] + sdown[v];
}
}
void dfs2(int u, int fa) {
if (fa == ) sall[u] = sdown[u];
else sall[u] = sall[fa] + n - * siz[u];
for (int i = ; i < G[u].size(); i++) {
int v = G[u][i];
if (v == fa) continue;
dfs2(v, u);
}
} inline void up(int &u,int d){
for (int i = maxm - ; i >= ; i--) {
if (dep[lca[u][i]] >= d) u = lca[u][i];
}
} int Lca(int u, int v) {
if (dep[u] < dep[v]) swap(u, v);
up(u, dep[v]);
if (u == v) return u;
for (int i = maxm - ; i >= ; i--) {
if (lca[u][i] != lca[v][i]) {
u = lca[u][i];
v = lca[v][i];
}
}
return lca[u][];
} void query() {
int u, v;
scanf("%d%d", &u, &v);
int anc = Lca(u, v);
//(u,v)链上的边的贡献+新增的边的贡献
double ans = dep[v] + dep[u] - * dep[anc] + ;
if (anc == v) swap(u, v);
if (anc == u) {
//x为(u,v)链上u的儿子
int x = v; up(x, dep[u] + );
//除x所在子树的点外到所有点的距离的和
LL tmp = sall[u] - sdown[x] - siz[x];
//ans+=(tmp*siz[v]+sdown[v]*(n-siz[x]))/((n-siz[x])*siz[v])
ans += 1.0*tmp / (n - siz[x]) + 1.0*sdown[v] / siz[v];
}
else {
//ans+=(sdown[v]*siz[u]+sdown[u]*siz[v])/(siz[v]*siz[u])
ans += 1.0*sdown[v] / siz[v] + 1.0*sdown[u] / siz[u];
}
printf("%.8lf\n", ans);
} void init() {
for (int i = ; i <= n; i++) G[i].clear();
} int main() {
while (scanf("%d%d", &n, &m) == && n) {
init();
for (int i = ; i < n; i++) {
int u, v;
scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs(, , );
dfs2(, );
while (m--) query();
}
return ;
}

Codeforces Round #343 (Div. 2) E. Famil Door and Roads的更多相关文章

  1. Codeforces Round #343 (Div. 2) E. Famil Door and Roads lca 树形dp

    E. Famil Door and Roads 题目连接: http://www.codeforces.com/contest/629/problem/E Description Famil Door ...

  2. Codeforces Round #343 (Div. 2) E. Famil Door and Roads (树形dp,lca)

    Famil Door's City map looks like a tree (undirected connected acyclic graph) so other people call it ...

  3. Codeforces Round #343 (Div. 2) C. Famil Door and Brackets dp

    C. Famil Door and Brackets 题目连接: http://www.codeforces.com/contest/629/problem/C Description As Fami ...

  4. Codeforces Round #343 (Div. 2) C. Famil Door and Brackets

    题目链接: http://codeforces.com/contest/629/problem/C 题意: 长度为n的括号,已经知道的部分的长度为m,现在其前面和后面补充‘(',或')',使得其长度为 ...

  5. Codeforces Round #343 (Div. 2)

    居然补完了 组合 A - Far Relative’s Birthday Cake import java.util.*; import java.io.*; public class Main { ...

  6. Codeforces Round #343 (Div. 2) B. Far Relative’s Problem 暴力

    B. Far Relative's Problem 题目连接: http://www.codeforces.com/contest/629/problem/B Description Famil Do ...

  7. Codeforces Round #343 (Div. 2) B

    B. Far Relative’s Problem time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  8. Codeforces Round #343 (Div. 2) A. Far Relative’s Birthday Cake 水题

    A. Far Relative's Birthday Cake 题目连接: http://www.codeforces.com/contest/629/problem/A Description Do ...

  9. Codeforces Round #343 (Div. 2)-629A. Far Relative’s Birthday Cake 629B. Far Relative’s Problem

    A. Far Relative's Birthday Cake time limit per test 1 second memory limit per test 256 megabytes inp ...

随机推荐

  1. SQL Server 日志清除

    在SqlServer中清除日志就必须在简单模式下进行,等清除动作完毕再调回到完全模式. *[DataBaseName]要压缩日志的数据库名称. 设置数据库模式为简单模式 ALTER DATABASE ...

  2. VHDL MOD和REM(转)

    mod(取模)and rem(取余) VHDL has mod and rem. They return the same value if both arguments are positive. ...

  3. WCF学习笔记(1)——Hello WCF

    1.什么是WCF Windows Communication Foundation(WCF)是一个面向服务(SOA)的通讯框架,作为.NET Framework 3.0的重要组成部分于2006年正式发 ...

  4. SDWebImage缓存清理

    //计算缓存大小 [SDImageCache sharedImageCache] getSize] //清理缓存 SDImageCache *sd = [[SDImageCache alloc]ini ...

  5. tomcat的OutOfMemoryError(PermGen space)解决方法

    修改TOMCAT_HOME/bin/catalina.bat,在“echo "Using CATALINA_BASE: $CATALINA_BASE"”上面加入以下行: set J ...

  6. Codevs 1669 运输装备

    时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Description 德国放松对英国的进攻后,把矛头指向了东北—— ...

  7. java.util.Vector

    public class Vector<E> extends AbstractList<E> implements List<E>, RandomAccess, C ...

  8. 修改eclipse中tomcat的发布路径

    当我们在eclipse部署好tomcat的时候,默认这个项目是部署在eclipse\workspace\.metadata\.plugins\org.eclipse.wst.server.core\t ...

  9. VHDL基本常识

    std_logic_vector和integer需要通过signed或unsigned进行间接转换(强制转换) a_std <= std_logic_vector(to_unsigned(a_i ...

  10. 实现textarea自适应的方法

    1.用div来模拟实现textarea自适应 <!doctype html> <html lang="en"> <head> <meta ...