poj 1797 Heavy Transportation(最短路变种2,连通图的最小边)
改动见下,请自行画图理解
具体细节也请看下面的代码:
这个花了300多ms
#define _CRT_SECURE_NO_WARNINGS #include<string.h>
#include<stdio.h>
#include<math.h>
#include<algorithm>
using namespace std; const int MAXN=; #define typec int
const typec INF=;//防止后面溢出,这个不能太大
bool vis[MAXN];
typec cost[MAXN][MAXN];
typec lowcost[MAXN];
void Dijkstra(int n,int beg) //连通图的最小边——最短路变种2,恰好和poj 2253 相反
{
for(int i=;i<=n;i++)
{
lowcost[i]=cost[beg][i];vis[i]=false;//因为初始化都在这里了,所以后面的对起点的初始化可以省去
}
for(int i=;i<=n;i++)
{
typec temp=-;//此处改动
int k=-;
for(int j=;j<=n;j++)
{
if(!vis[j]&&lowcost[j]>temp)//此处改动
{
temp=lowcost[j];
k=j;
}
}
vis[k]=true;
for(int l=;l<=n;l++)
{
if(!vis[l])
{
lowcost[l]=max(min(lowcost[k],cost[k][l]),lowcost[l]);//原来改动在这列,具体可画图求证感知
}
}
}
} int main()
{
int n,i,id=,t,m,a,b,c;
scanf("%d",&t);
for(;id<=t;)
{
scanf("%d%d",&n,&m);//路口数和街道数不要反了!
memset(cost,,sizeof(cost));//初始化请注意,这里要都变为0,相当于无法运货,即载重量为0
for(i=;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&c);
cost[a][b]=cost[b][a]=c;//这里请注意
}
Dijkstra(n,);
printf("Scenario #%d:\n%d\n\n",id++,lowcost[n]);//居然在输出这里跪了
}
return ;
}
在初始化时改一笔我觉得更容易理解,在此处也可以AC,但是时间多了,代码如下,花了400多ms
#define _CRT_SECURE_NO_WARNINGS #include<string.h>
#include<stdio.h>
#include<math.h>
#include<algorithm>
using namespace std; const int MAXN=; #define typec int
const typec INF=0x3f3f3f3f;//防止后面溢出,这个不能太大
bool vis[MAXN];
typec cost[MAXN][MAXN];
typec lowcost[MAXN];
void Dijkstra(int n,int beg) //连通图的最小边——最短路变种2,恰好和poj 2253 相反
{
for(int i=;i<=n;i++)
{
lowcost[i]=cost[beg][i];vis[i]=false;//因为初始化都在这里了,所以后面的对起点的初始化可以省去
}
for(int i=;i<=n;i++)
{
typec temp=-;//此处改动
int k=-;
for(int j=;j<=n;j++)
{
if(!vis[j]&&lowcost[j]>temp)//此处改动
{
temp=lowcost[j];
k=j;
}
}
vis[k]=true;
for(int l=;l<=n;l++)
{
if(!vis[l])
{
lowcost[l]=max(min(lowcost[k],cost[k][l]),lowcost[l]);//原来改动在这列,具体可画图求证感知
}
}
}
} int main()
{
int n,i,id=,t,m,a,b,c;
scanf("%d",&t);
for(;id<=t;)
{
scanf("%d%d",&n,&m);//路口数和街道数不要反了!
memset(cost,,sizeof(cost));//初始化请注意,这里要都变为0,相当于无法运货,即载重量为0 for(i=;i<=n;i++)
cost[i][i]=INF; //感觉加了这个更容易理解,因为是同一地方,载重量可以无限大 for(i=;i<=m;i++)
{
scanf("%d%d%d",&a,&b,&c);
cost[a][b]=cost[b][a]=c;//这里请注意
}
Dijkstra(n,);
printf("Scenario #%d:\n%d\n\n",id++,lowcost[n]);//居然在输出这里跪了
}
return ;
}
poj 1797 Heavy Transportation(最短路变种2,连通图的最小边)的更多相关文章
- POJ 1797 Heavy Transportation (最短路)
Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 22440 Accepted: ...
- POJ 1797 Heavy Transportation 最短路变形(dijkstra算法)
题目:click here 题意: 有n个城市,m条道路,在每条道路上有一个承载量,现在要求从1到n城市最大承载量,而最大承载量就是从城市1到城市n所有通路上的最大承载量.分析: 其实这个求最大边可以 ...
- POJ 1797 Heavy Transportation(Dijkstra变形——最长路径最小权值)
题目链接: http://poj.org/problem?id=1797 Background Hugo Heavy is happy. After the breakdown of the Carg ...
- poj 1797 Heavy Transportation(最大生成树)
poj 1797 Heavy Transportation Description Background Hugo Heavy is happy. After the breakdown of the ...
- POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径)
POJ 1797 Heavy Transportation / SCU 1819 Heavy Transportation (图论,最短路径) Description Background Hugo ...
- POJ.1797 Heavy Transportation (Dijkstra变形)
POJ.1797 Heavy Transportation (Dijkstra变形) 题意分析 给出n个点,m条边的城市网络,其中 x y d 代表由x到y(或由y到x)的公路所能承受的最大重量为d, ...
- POJ 1797 Heavy Transportation
题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K T ...
- POJ 1797 Heavy Transportation SPFA变形
原题链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K T ...
- POJ 1797 ——Heavy Transportation——————【最短路、Dijkstra、最短边最大化】
Heavy Transportation Time Limit:3000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64 ...
随机推荐
- flume+kafka (分区实现 默认单分区) (二)
这篇文章主要在上一篇文章的基础上讲一下 如何自定义flume到kafka的分区 上一节中从下面的地址下载了一个源码 https://github.com/beyondj2ee/flumeng-kafk ...
- 《服务器的追踪与审计》RHEL6
在linux系统/etc目录下有两个文件: 服务器的追踪: 当其他人访问我的主机时,通过日志监控到那台主机什么时间通过什么方式登陆,做什么?
- rhel_7.x 安装mysql
http://database.51cto.com/art/201310/413006.htm MariaDB和MySQL --mysql-5.7.12-1.el7.x86_64.rpm-bundle ...
- Hello,cnblog。
This my blog
- jquery实现ajax,返回json数据
jquery实现ajax可以调用几种方法 我经常用的是$get(url,data,callback,type)方法 其中url是异步请求的页面(可以是.ashx文件),data是参数,callback ...
- Super Object Toolkit (支持排序)
(* * Super Object Toolkit * * Usage allowed under the restrictions of the Lesser GNU General Public ...
- ASP.NET中的母版页机制
项目中用到了母版页,由于好长时间没用了,不太熟悉起原理,在网上找了一下: http://www.cnblogs.com/_zjl/archive/2011/06/12/2078992.html 有时间 ...
- Microsoft .NET Framework 3.5 for Windowns Server2012R2 GUI
图形化安装,需要安装盘,不需要网络连接
- 从零开始学ios开发(七):Delegate,Action Sheet, Alert
Action Sheet和Alert是2种特殊的控件(暂且称之为控件吧,其实不是控件真正的控件,而是ios中的2个类,这2个类定义了2种不同类型的用于和用户交互的弹出框),Action Sheet是从 ...
- 微软职位内部推荐-Software Development Engineer II
微软近期Open的职位: Job Title:Software Development EngineerII Division: Server & Tools Business - Comme ...