A Simple Problem with Integers

每次将区间向下更新,或是用之前的方法,统计当前节点到父节点处的覆盖数目。

#include <cstdio>
#include <iostream>
using namespace std; const int MAXN = ; typedef long long int64; int d[MAXN]; class SegNode {
public:
int L, R;
int64 c, sum;
int64 get_c() { return c * (R - L + ); }
void log(const char *info) {
printf("%s: [%d %d]: %lld, %lld.\n", info, L, R, c, sum);
}
} node[MAXN * ]; class SegTree {
public:
void log(const char *info) {
printf("%s:\n", info);
printf("{%d %d}, %lld, %lld.\n", node[].L, node[].R, node[].c, node[].sum);
}
void build(int r, int L, int R) {
node[r].L = L;
node[r].R = R;
node[r].c = ;
if (L == R) {
node[r].sum = d[L];
} else {
int M = (L + R) / ;
build( * r, L, M);
build( * r + , M + , R);
node[r].sum = node[ * r].sum + node[ * r + ].sum;
}
}
int64 query(int r, int L, int R) {
if (L <= node[r].L && node[r].R <= R) {
return node[r].sum + node[r].get_c();
} else {
node[ * r].c += node[r].c;
node[ * r + ].c += node[r].c;
int64 res = ;
if (L <= node[ * r].R) {
res += query( * r, L, R);
}
if (R >= node[ * r + ].L) {
res += query( * r + , L, R);
}
node[r].c = ;
node[r].sum = node[ * r].sum + node[ * r + ].sum + node[ * r].get_c() + node[ * r + ].get_c();
//node[r].log("query");
return res;
}
}
void insert(int r, int L, int R, int c) {
if (L <= node[r].L && node[r].R <= R) {
node[r].c += c;
} else {
node[ * r].c += node[r].c;
node[ * r + ].c += node[r].c;
if (L <= node[ * r].R) {
insert( * r, L, R, c);
}
if (R >= node[ * r + ].L) {
insert( * r + , L, R, c);
}
node[r].c = ;
node[r].sum = node[ * r].sum + node[ * r + ].sum + node[ * r].get_c() + node[ * r + ].get_c();
}
//log("tree");
//node[r].log("insert");
}
/*{{{ insert2*/
void insert2(int r, int L, int R, int c) {
if (L <= node[r].L && node[r].R <= R) {
node[r].c += c;
} else {
if (L <= node[ * r].R) {
insert( * r, L, R, c);
}
if (R >= node[ * r + ].L) {
insert( * r + , L, R, c);
}
node[r].sum = node[ * r].sum + node[ * r + ].sum + node[ * r].get_c() + node[ * r + ].get_c();
}
}
/*}}}*/
/*{{{ query2*/
int64 query2(int r, int L, int R, int dd) {
dd += node[r].c;
if (L <= node[r].L && node[r].R <= R) {
return node[r].sum + (node[r].R - node[r].L + ) * dd;
} else {
int res = ;
if (L <= node[ * r].R) {
res += query( * r, L, R);
}
if (R >= node[ * r + ].L) {
res += query( * r + , L, R);
}
return res;
}
}
/*}}}*/
}; int main() {
int n, q;
while (scanf("%d%d", &n, &q) != EOF) {
SegTree tree;
for (int i = ; i <= n; i++) scanf("%d", &d[i]);
tree.build(, , n);
while (q--) {
char ch[];
int a, b;
scanf("%s%d%d", ch, &a, &b);
if (ch[] == 'C') {
int c;
scanf("%d", &c);
tree.insert(, a, b, c);
//tree.insert2(1, a, b, c);
} else if (ch[] == 'Q') {
printf("%lld\n", tree.query(, a, b));
/*
int dd = 0;
printf("%lld\n", tree.query2(1, a, b, dd));
*/
}
}
}
}

Fast Matrix Operations

需要注意的是:

1. 插入及查询在树上向下遍历时,不然是否有遍历,都应该将节点上的覆盖数目向下传递;

2. 树构建的时候,一些节点会构建不出来,这种类型的节点,在插入向孩子节点遍历的时候,之前判断失败的条件,可能会判断成功,从而导致错误;

3. 节点中的sum表示的是当前节点构成的树除了当前节点上的覆盖数以外的所有数的和。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; typedef long long int64; class SegNode {
public:
int L, R, B, T;
int64 v, m_min, m_max, m_sum;
bool is_clear;
SegNode* sons[];
SegNode() {
v = m_min = m_max = m_sum = ;
is_clear = false;
memset(sons, NULL, sizeof(sons));
}
int area() {
return (R - L + ) * (T - B + );
}
}; class SegTree {
public:
void free(SegNode *node) {
for (int i = ; i < ; i++) {
if (node->sons[i] != NULL) {
free(node->sons[i]);
}
}
if (node != NULL) {
delete node;
node = NULL;
}
}
void build(SegNode* &node, int L, int R, int B, int T) {
node = new SegNode();
node->L = L; node->R = R; node->B = B; node->T = T;
if (L == R && B == T) {
// leaf
} else {
// non leaf
int M1 = (L + R) / ;
int M2 = (B + T) / ;
if (L <= M1 && M2 + <= T) build(node->sons[], L, M1, M2 + , T);
if (M1 + <= R && M2 + <= T) build(node->sons[], M1 + , R, M2 + , T);
if (L <= M1 && B <= M2) build(node->sons[], L, M1, B, M2);
if (M1 + <= R && B <= M2) build(node->sons[], M1 + , R, B, M2);
}
}
void insert(SegNode *node, int L, int R, int B, int T, int v, int k) {
//node->log();
if (L <= node->L && node->R <= R && B <= node->B && node->T <= T) {
if (k == ) node->v += v;
else if (k == ) {
node->v = v;
node->m_min = node->m_max = node->m_sum = ;
node->is_clear = true;
}
} else {
int M1 = (node->L + node->R) / ;
int M2 = (node->B + node->T) / ;
for (int i = ; i < ; i++) {
if (node->sons[i] != NULL) {
down(node, node->sons[i]);
}
}
if (L <= M1 && T >= M2 + ) {
if (node->sons[] != NULL)
insert(node->sons[], L, R, B, T, v, k);
}
if (R >= M1 + && T >= M2 + ) {
if (node->sons[] != NULL)
insert(node->sons[], L, R, B, T, v, k);
}
if (L <= M1 && B <= M2) {
if (node->sons[] != NULL)
insert(node->sons[], L, R, B, T, v, k);
}
if (R >= M1 + && B <= M2) {
if (node->sons[] != NULL)
insert(node->sons[], L, R, B, T, v, k);
}
// clear node[r]
node->is_clear = false;
node->v = ;
update(node);
}
}
void down(SegNode *r, SegNode *t) {
r->is_clear;
if (r->is_clear) {
t->is_clear = true;
t->v = r->v;
//
t->m_min = t->m_max = t->m_sum = ;
} else {
t->v += r->v;
}
}
void update(SegNode *r) {
bool need = true;
for (int i = ; i < ; i++) {
if (r->sons[i] != NULL) {
if (need) {
need = false;
r->m_min = r->sons[i]->m_min + r->sons[i]->v;
r->m_max = r->sons[i]->m_max + r->sons[i]->v;
r->m_sum = r->sons[i]->m_sum + r->sons[i]->v * r->sons[i]->area();
} else {
r->m_min = min(r->m_min, r->sons[i]->m_min + r->sons[i]->v);
r->m_max = max(r->m_max, r->sons[i]->m_max + r->sons[i]->v);
r->m_sum += r->sons[i]->m_sum + r->sons[i]->v * r->sons[i]->area();
}
}
}
}
void query(SegNode *node, int L, int R, int B, int T, int64& mmin, int64& mmax, int64& msum) {
//node->log();
if (L <= node->L && node->R <= R && B <= node->B && node->T <= T) {
mmin = min(mmin, node->m_min + node->v);
mmax = max(mmax, node->m_max + node->v);
msum += node->m_sum + node->v * node->area();
} else {
int M1 = (node->L + node->R) / ;
int M2 = (node->B + node->T) / ;
for (int i = ; i < ; i++) {
if (node->sons[i] != NULL) {
down(node, node->sons[i]);
}
}
if (L <= M1 && T >= M2 + ) {
if (node->sons[] != NULL)
query(node->sons[], L, R, B, T, mmin, mmax, msum);
}
if (R >= M1 + && T >= M2 + ) {
if (node->sons[] != NULL)
query(node->sons[], L, R, B, T, mmin, mmax, msum);
}
if (L <= M1 && B <= M2) {
if (node->sons[] != NULL)
query(node->sons[], L, R, B, T, mmin, mmax, msum);
}
if (R >= M1 + && B <= M2) {
if (node->sons[] != NULL)
query(node->sons[], L, R, B, T, mmin, mmax, msum);
}
// clear node[r]
node->is_clear = false;
node->v = ;
update(node);
}
}
}; int main() {
//freopen("fast.in", "r", stdin); int r, c, m;
while (scanf("%d%d%d", &r, &c, &m) != EOF) {
SegTree tree;
SegNode *root = NULL;
tree.build(root, , r, , c);
for (int i = ; i < m; i++) {
int k, x1, y1, x2, y2, v;
scanf("%d%d%d%d%d", &k, &x1, &y1, &x2, &y2);
if (k == ) {
int64 mmin = 1e9, mmax = -1e9, msum = ;
tree.query(root, x1, x2, y1, y2, mmin, mmax, msum);
printf("%lld %lld %lld\n", msum, mmin, mmax);
} else {
scanf("%d", &v);
tree.insert(root, x1, x2, y1, y2, v, k);
}
}
tree.free(root);
}
}

Fast Matrix Operations的更多相关文章

  1. UVA 11992 - Fast Matrix Operations(段树)

    UVA 11992 - Fast Matrix Operations 题目链接 题意:给定一个矩阵,3种操作,在一个矩阵中加入值a,设置值a.查询和 思路:因为最多20列,所以全然能够当作20个线段树 ...

  2. UVA11992 - Fast Matrix Operations(段树部分的变化)

    UVA11992 - Fast Matrix Operations(线段树区间改动) 题目链接 题目大意:给你个r*c的矩阵,初始化为0. 然后给你三种操作: 1 x1, y1, x2, y2, v ...

  3. uva 11992 Fast Matrix Operations 线段树模板

    注意 setsetset 和 addvaddvaddv 标记的下传. 我们可以控制懒惰标记的优先级. 由于 setsetset 操作的优先级高于 addaddadd 操作,当下传 setsetset ...

  4. Fast Matrix Operations(UVA)11992

    UVA 11992 - Fast Matrix Operations 给定一个r*c(r<=20,r*c<=1e6)的矩阵,其元素都是0,现在对其子矩阵进行操作. 1 x1 y1 x2 y ...

  5. 线段树(多维+双成段更新) UVA 11992 Fast Matrix Operations

    题目传送门 题意:训练指南P207 分析:因为矩阵不超过20行,所以可以建20条线段的线段树,支持两个区间更新以及区间查询. #include <bits/stdc++.h> using ...

  6. UVA 11992 Fast Matrix Operations(线段树:区间修改)

    题目链接 2015-10-30 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=s ...

  7. UVA 11992 Fast Matrix Operations (二维线段树)

    解法:因为至多20行,所以至多建20棵线段树,每行建一个.具体实现如下,有些复杂,慢慢看吧. #include <iostream> #include <cstdio> #in ...

  8. UVa 11992 (线段树 区间修改) Fast Matrix Operations

    比较综合的一道题目. 二维的线段树,支持区间的add和set操作,然后询问子矩阵的sum,min,max 写完这道题也是醉醉哒,代码仓库里还有一份代码就是在query的过程中也pushdown向下传递 ...

  9. uva 11992 - Fast Matrix Operations

    简单的线段树的题: 有两种方法写这个题,目前用的熟是这种慢点的: 不过不知道怎么老是T: 感觉网上A过的人的时间度都好小,但他们都是用数组实现的 难道是指针比数组慢? 好吧,以后多用数组写写吧! 超时 ...

随机推荐

  1. Libcurl笔记三

    一,post请求和回报处理 //"host/path?extra" //strHttp=" http://portal.liuhan.com:/web/getConfig ...

  2. (四)Qt之右键菜单

    1.右键菜单创建和显示 作为一种交互性强.使用方便的右键菜单在程序中是非常常用的,在Qt中可以轻松的实现. QMenu menu; //添加菜单项,指定图标.名称.响应函数 menu.addActio ...

  3. CICS日志---内存问题

    Level 9 COCITOOL_XA: Connected! [2014-01-09 19:46:24.296834][22347888] Level 0 TestPerormence: GDAO ...

  4. Android 源码编译 步骤

    添加资源后编译步骤 1:lunch 112:mmm frameworks/base/core/res/生成Install: out/target/product/hammerhead/system/f ...

  5. Transact-SQL 存储过程(c#调用执行)

    1. Microsoft SQL Server Management Studio 中创建 存储过程 1.1 借助模板资源管理器中的Stored Procedure模板进行修改创建 1.2 直接新建查 ...

  6. WinForm多线程及委托防止界面假死

    当有大量数据需要计算.显示在界面或者调用sleep函数时,容易导致界面卡死,可以采用多线程加委托的方法解决. using System; using System.Collections.Generi ...

  7. VS2010水晶报表的添加与使用

    最近在学习VS2010水晶报表,发现原先安装的VS2010旗舰版没有 Crystal Report Viewer 控件,网上搜索一下发现要安装一个插件----CRforVS_13_0, 于是下载安装: ...

  8. 安卓项目中使用JSON引发的一个小错误 Multiple dex files define Lorg/apache/commons/collections/Buffer

    原因: 这里添加的jar包和android自带的jar产生了冲突

  9. ECSHOP如何解决购物车中商品自动消失问题

    最近有客户反映关于ECShop购物车的问题:需要加入多个商品到购物车时,发现之前加入到购物车的商品都自动消失了,只有最后一次加入购物车的商品在里面.那么,这是什么原因呢? 因为ECShop的SESSI ...

  10. discuz!X2.5技术文档

    discuz!系统常量: DISCUZ_ROOT //网站根目录 TIMESTAMP   //程序执行的时间戳 CHARSET     //程序的编码类型 FORMHASH    //HASH值 其余 ...