BZOJ 4036 [HAOI2015] Set 解题报告
首先我们不能一位一位的考虑,为什么呢?
你想想,你如果一位一位地考虑的话,那么最后就只有 $n$ 个数字,然而他给了你 $2^n$ 个数字,怎么看都不对劲呀。(我是因为这样子弄没过样例才明白的)
所以我们还是要想想其他的方法。
我们是要算步数的期望,然而步数是一个离散的整数,所以我们可以把问题转化一下:
$$E(s) = \sum_{k=1}^{\infty}P(s\ge k)$$
然后就好做了嘛。
我们可以求出一个 $F_i = \sum_{j\subseteq i} p_j$,表示随机选一个数是 $i$ 的子集的概率。
那么就会有:
$$P(s\ge k) = \sum_{i=0}^{2^n-1}(-1)^{c(i)+n+1}\times F_i^{k-1}$$
其中 $c(i)$ 表示 $i$ 的二进制表示中 $1$ 的个数。以上的式子也就是一个容斥的样子,其实说起来就是位运算卷积。然后于是就有:
$$E(s) = \sum_{i=0}^{2^n-1} (-1)^{c(i)+n+1}\sum_{k=0}^{\infty}F_i^{k-1} = \sum_{i=0}^{2^n-1} \frac{(-1)^{c(i)+n+1}}{1 - F_i}$$
然后好像就做完啦。
时间复杂度 $O(n\times2^n)$,空间复杂度 $O(2^n)$。
#include <cstdio>
typedef long double LD;
#define N 1 << 20
#define eps 1e-11 int n, Op[N];
LD A[N]; int main()
{
scanf("%d", &n);
Op[] = n & ? : -;
for (int i = ; i < ( << n); i ++)
{
double x;
scanf("%lf", &x);
A[i] = x;
if (i > ) Op[i] = -Op[i - (i & -i)];
}
for (int k = ; k < ( << n); k <<= )
for (int i = ; i < ( << n); i ++)
{
if (i & k) continue ;
A[i + k] += A[i];
}
bool ok = ;
for (int i = ; ok && i < ( << n) - ; i ++)
if (A[i] + eps > ) ok = ;
if (!ok) puts("INF");
else
{
LD ans = ;
for (int i = ; i < ( << n) - ; i ++)
ans += Op[i] / ( - A[i]);
printf("%.10lf\n", (double) ans);
} return ;
}
4036_Gromah
BZOJ 4036 [HAOI2015] Set 解题报告的更多相关文章
- [BZOJ 4036][HAOI2015]按位或
4036: [HAOI2015]按位或 Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 746 Solved: 4 ...
- BZOJ 4619 Swap Space 解题报告
今天是因为David Lee正好讲这个题的类似题,我才做了一下. 本题是world final 2016的一道水…… 题目地址如下 http://www.lydsy.com/JudgeOnline/p ...
- BZOJ 2839: 集合计数 解题报告
BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...
- bzoj 4036 [HAOI2015]按位或——min-max容斥+FMT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4036 题解:https://www.cnblogs.com/Zinn/p/10260126. ...
- BZOJ 1367 [Baltic2004]sequence 解题报告
BZOJ 1367 [Baltic2004]sequence Description 给定一个序列\(t_1,t_2,\dots,t_N\),求一个递增序列\(z_1<z_2<\dots& ...
- BZOJ 4036: [HAOI2015]按位或 集合幂函数 莫比乌斯变换 莫比乌斯反演
http://www.lydsy.com/JudgeOnline/problem.php?id=4036 http://blog.csdn.net/lych_cys/article/details/5 ...
- BZOJ 1044 木棍分割 解题报告(二分+DP)
来到机房刷了一道水(bian’tai)题.题目思想非常简单易懂(我的做法实际上参考了Evensgn 范学长,在此多谢范学长了) 题目摆上: 1044: [HAOI2008]木棍分割 Time Limi ...
- BZOJ 4341 [CF253 Printer] 解题报告
乍一看这个题好像可以二分优先度搞搞... 实际上能不能这么搞呢...? 我反正不会... 于是开始讲我的乱搞算法: 首先肯定要把任务按照优先度排序. 用一棵在线建点的线段树维护一个时刻是否在工作. 然 ...
- BZOJ 3288 Mato矩阵 解题报告
这个题好神呀..Orz taorunz 有一个结论,这个结论感觉很优美: $$ans = \prod_{i=1}^{n}\varphi(i)$$ 至于为什么呢,大概是这样子的: 对于每个数字 $x$, ...
随机推荐
- 编译mosquitto出现的问题
[root@localhost mosquitto-1.3]# make WITH_TLS=no set -e; for d in lib client src; do make -C ${d}; d ...
- asp自动补全html标签自动闭合(正则表达式)
Function closeHTML(strContent) Dim arrTags, i, OpenPos, ClosePos, re, strMatchs, j, Match Set re = N ...
- Animated App Boot Example : Fastest animation at app boot time
This iPhone app shows how to create an animation that is displayed when the app starts. The animatio ...
- web工程中URL地址的写法
在开发中我们不可避免的要碰到许多需要写URL地址的情况,这常常让我们感到头疼.下面笔者推荐一种简单的做法.URL地址分为绝对路径和相对路径两种.相对路径又分为相对资源路径和相对根路径.显然绝对路径在开 ...
- .net 下载图片
最近boss让写一个二维码的生成器,但是二维码生成后用户如果想下载二维码,这就促使我写l了 下载功能,小弟自认为技术不咋样,是个彻头彻尾的码农,本先是想用js来实现功能,但是查找了好多资料也没能实现, ...
- iOS学习——iOS视频和推荐网站
最近有人问有没有iOS学习的相关资料,就简单的把自己的知道的和资源共享一下: 个人感觉iOS开发人才饱和,培训泛滥,个人推荐后台升职空间大和web前端竞争小. [链接][Ronda收集整理]2014年 ...
- 使用Ctex总结1
使用Ctex应该是每一个做学术研究的人要学会掌握的. 它的基本结构: \documentclass[11pt,two side,a4paper]{cctart}%使用cctart可以让摘要变成中文,比 ...
- spring junit参数
备忘,以后有时间再写点东西吧.其实自己就没有开始写过. blog地址:http://www.cnblogs.com/shizhongtao/p/3342174.html //spring 配置的路径, ...
- 比较X与Y的大小,绝对精准!!!!!!
代码! #include<stdio.h> int max(int a,int b) { int x; x=a+b; return x; } int main() { int i,n,t; ...
- thinkphp3.2引入php 实例化类
如果你的类库没有采用命名空间的话,需要使用import方法先加载类库文件,然后再进行实例化,例如:我们定义了一个Counter类(位于Com/Sina/Util/Counter.class.php): ...