Weighted Sum Approach

该方法给出的表达式为:

首先,λ被称之为权重向量,观察和式,这完全就是m维向量的点乘公式嘛。具体的说,在目标空间中,把算法求出的一个目标点和原点相连构造成一个向量,此时,该方法的做法是将该向量与对应权重向量点乘,由向量点乘的几何意义可知,所得的数为该向量在权重向量方向上的投影长度,因为权重向量不变,最大/小化该长度值其实就是在优化该向量。可知若要增大该向量在权重向量上投影的长度,一方面可以增大/减小与权重向量的夹角,另一方面可以增大/减小该向量的长度。样例图如下:

上图中:考虑红色权重向量,因为是最小化问题,所以减小长度,增大夹角都是可行的方案,绿色为等高线,垂直于权重向量。

TchebycheffApproach

该方法给出的表达式为:

注意该方法中不再含有Σ符号,故不能再从向量点乘的角度理解。该方法大致思想是减少最大差距从而将个体逼近PF。等高线示意图如下:

首先解释等高线为什么是这样的。单看f1函数,即只考虑纵坐标,若两点等值,必然是 式中f1的函数值相等(因为另外两个量是不变的),即纵坐标相等,所以f1函数的等高线是一组平行于横轴的直线。f2类似,为一组平行于纵轴的直线。

那么,图中的等高线是横竖相交且刚好交在权重向量的方向上的,这是巧合吗?可以稍微来证明一下,可知,对于任何一个可行的切比雪夫值(自己叫的),我们从f1的角度上可以得到一个f1的值y,从f2的角度上可以得到一个f2的值x,他们的切比雪夫值是相等的,自然想到,点(x,y)(图中紫色点)为该切比雪夫值得横纵两条等值线的交点,那么有:λ1*(y-z1)= λ2*(x-z2),化简的(y-z1)/(x-z2)= λ2/λ1,可知该交点位于权重向量的方向上。

需要注意一点,这里的权重向量起点是Z*,不再是原点。

此时可知,若某个个体位于其权重向量方向的上部,则max得到的一定是其f1部分,故优化也需要减小其f1的值,即个体向下移动,相反,若在权重向量方向的下部,则应像左移动。以此来保证个体目标值落在黄点附近。

一种可能的个体运动路线如下图橘黄色所示:

Boundary IntersectionApproach

该方法给出的表达式为:

式中个参数含义如下图所示:

式子中等式约束其目的是为了保证F(x)位于权重向量λ的方向上,通过减小d来使算法求出的解逼近PF。但该条件不太容易实现,故将其改进为下边这种方法。

penalty-basedboundary intersection approach

改进后的式子为:

各个参数的含义如下图:

可知算法放宽了对算法求出的解得要求,但加入了一个惩罚措施,说白了,就是你可以不把解生成在权重向量的方向上,但如果不在权重向量方向上,你就必须要接收惩罚,你距离权重向量越远,受的惩罚越厉害,以此来约束算法向权重向量的方向生成解。

接下来是关于d1和d2两个参数的计算表达式的含义说明,我依然是从几何角度理解的。

d1——观察d1的计算表达式,Z*-F(x)可以看做原点到Z*点的向量减去原点到F(x)的向量,得到的是从F(x)出发指向Z*的一个向量,暂且命名为μ,之后μ与λ相乘得到μ在λ方向上的投影,这个长度值与λ的长度值之比为d1。

d2——其表达式的含义其实也无非就是利用向量运算构造出d2所表示的向量,取模即可得到d2.构造过程如下:

Z*表红色向量,d1*λ表蓝色向量(因为减法,所以方向取反),红色减蓝色得紫色向量,F(x)表绿色向量,绿色减紫色得黄色向量,即d2表黄色向量的长度。

多目标进化算法(MOEA)概述的更多相关文章

  1. 【目标检测】基于传统算法的目标检测方法总结概述 Viola-Jones | HOG+SVM | DPM | NMS

    "目标检测"是当前计算机视觉和机器学习领域的研究热点.从Viola-Jones Detector.DPM等冷兵器时代的智慧到当今RCNN.YOLO等深度学习土壤孕育下的GPU暴力美 ...

  2. [Evolutionary Algorithm] 进化算法简介

    进化算法,也被成为是演化算法(evolutionary algorithms,简称EAs),它不是一个具体的算法,而是一个“算法簇”.进化算法的产生的灵感借鉴了大自然中生物的进化操作,它一般包括基因编 ...

  3. 多目标优化算法(一)NSGA-Ⅱ(NSGA2)(转载)

    多目标优化算法(一)NSGA-Ⅱ(NSGA2) 本文链接:https://blog.csdn.net/qq_40434430/article/details/82876572多目标优化算法(一)NSG ...

  4. 【Python Deap库】遗传算法/遗传编程 进化算法基于python DEAP库深度解析讲解

    目录 前言 概述 启发式的理解(重点) 优化问题的定义 个体编码 初始族群的创建 评价 配种选择 锦标赛 轮盘赌选择 随机普遍抽样选择 变异 单点交叉 两点交叉 均匀交叉 部分匹配交叉 突变 高斯突变 ...

  5. 差分进化算法 DE-Differential Evolution

    差分进化算法 (Differential Evolution)   Differential Evolution(DE)是由Storn等人于1995年提出的,和其它演化算法一样,DE是一种模拟生物进化 ...

  6. geatpy - 遗传和进化算法相关算子的库函数(python)

    Geatpy The Genetic and Evolutionary Algorithm Toolbox for Python Introduction Website (including doc ...

  7. 基于候选区域的深度学习目标检测算法R-CNN,Fast R-CNN,Faster R-CNN

    参考文献 [1]Rich feature hierarchies for accurate object detection and semantic segmentation [2]Fast R-C ...

  8. Python遗传和进化算法框架(一)Geatpy快速入门

    https://blog.csdn.net/qq_33353186/article/details/82014986 Geatpy是一个高性能的Python遗传算法库以及开放式进化算法框架,由华南理工 ...

  9. CARS: 华为提出基于进化算法和权值共享的神经网络结构搜索,CIFAR-10上仅需单卡半天 | CVPR 2020

    为了优化进化算法在神经网络结构搜索时候选网络训练过长的问题,参考ENAS和NSGA-III,论文提出连续进化结构搜索方法(continuous evolution architecture searc ...

随机推荐

  1. 【LOJ】#2264. 「CTSC2017」吉夫特

    题解 根据一番认真严肃的猜结论和打表证明之后 我们可以得到 \(f[i] = (\sum_{a[i] \& a[j] == a[j]} f[j]) + 1\) 统计所有的\(f[i] - 1\ ...

  2. 【LOJ】#2270. 「SDOI2017」天才黑客

    题解 显然要记录每个点来的状态,这样会扩充出点度的平方条边,就gg了 删掉所有的点,把每个边拆成两个点,连一条边权为c 这个时候我们考虑对于原先的每个点,将所有与其相连边所需要的节点(不管是进入还是出 ...

  3. MapReduce原理1

    Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于hadoop的数据分析应用”的核心框架: Mapreduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算 ...

  4. Argument 1 passed to Illuminate\Auth\SessionGuard::login() must be an instance of Illuminate\Contracts\Auth\Authenticatable, instance of App\User given,

    使用laravel内置的注册认证系统,注册账号,提示如下错误.Google之后,发现github的一个答案,解决了.分享一下 Argument 1 passed to Illuminate\Auth\ ...

  5. Python学习笔记之爬取网页保存到本地文件

     爬虫的操作步骤: 爬虫三步走 爬虫第一步:使用requests获得数据: (request库需要提前安装,通过pip方式,参考之前的博文) 1.导入requests 2.使用requests.get ...

  6. MySQL查询语句执行过程及性能优化-查询过程及优化方法(JOIN/ORDER BY)

    在上一篇文章MySQL查询语句执行过程及性能优化-基本概念和EXPLAIN语句简介中介绍了EXPLAIN语句,并举了一个慢查询例子:

  7. ajax跨域请求Flask后台

    ajax中使用jsonp方式实现跨域 headers: {'Cookie' : document.cookie } #携带cookie xhrFields: { withCredentials: tr ...

  8. 如何在Ubuntu 18.04上安装和配置Apache 2 Web服务器(转)

    如何在Ubuntu 18.04上安装和配置Apache 2 Web服务器 什么是Apache Web Server? Apache或Apache HTTP服务器是一个免费的开源Web服务器,由Apac ...

  9. vue-router填坑之路

    1.在结构化css时,习惯将不同的css文件通过一个入口文件打包,而入口文件在引入其他css文件时,需要强烈注意,要在单行末尾加分号: 少分号的,单行相对应的css文件会引用无效 @import '. ...

  10. VM 操作系统实例化(基于 KVM 的虚拟化研究及应用--崔泽永(2011))的论文笔记

    一.VM操作系统实例化 1.建立虚拟磁盘镜像 虚拟磁盘镜像在逻辑上是提供给虚拟机使用的硬盘, 在物理上可以是 L inux系 统内一普通镜像文件, 也可以是真实的物理磁盘或分区. 本方案设计中将虚拟机 ...