题目描述

一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻8个格子中的一个即认为这两个数字相邻),求取出数字和最大是多少。

输入输出格式

输入格式:

输入第1行有一个正整数T,表示了有T组数据。

对于每一组数据,第1行有两个正整数N和M,表示了数字矩阵为N行M列。

接下来N行,每行M个非负整数,描述了这个数字矩阵。

输出格式:

输出包含T行,每行一个非负整数,输出所求得的答案。

输入输出样例

输入样例#1:

3
4 4
67 75 63 10
29 29 92 14
21 68 71 56
8 67 91 25
2 3
87 70 85
10 3 17
3 3
1 1 1
1 99 1
1 1 1
输出样例#1:

271
172
99

说明

对于第1组数据,取数方式如下:

[67] 75 63 10

29 29 [92] 14

[21] 68 71 56

8 67 [91] 25

对于20%的数据,N, M≤3;

对于40%的数据,N, M≤4;

对于60%的数据,N, M≤5;

对于100%的数据,N, M≤6,T≤20。

————————————————我是分割线————————————————————

 /*
Problem:
OJ:
User: S.B.S.
Time:
Memory:
Length:
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstdlib>
#include<iomanip>
#include<cassert>
#include<climits>
#include<functional>
#include<bitset>
#include<vector>
#include<list>
#define F(i,j,k) for(int i=j;i<=k;++i)
#define M(a,b) memset(a,b,sizeof(a))
#define FF(i,j,k) for(int i=j;i>=k;i--)
#define maxn 10001
#define inf 0x3f3f3f3f
#define maxm 4001
#define mod 998244353
//#define LOCAL
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m;
int ans;
int a[][];
int dx[]={,,,,,,-,-,-},dy[]={,,-,,-,,,,-};//方向增量
int can[][];//表示是否可选
void DFS(int i,int j,int now){//i为行,j为列,now为现值
if(j>m){//列超出,行+1,列归1
i++;
j=;
}
if(i>n){//行超出,更新ans,结束
if(now>ans)ans=now;
return;
}
int k;
if(can[i][j]==){//选
for(k=;k<;k++)can[i+dx[k]][j+dy[k]]++;/*此次不能用bool存储,可能有多重状态*/
DFS(i,j+,now+a[i][j]);
for(k=;k<;k++)can[i+dx[k]][j+dy[k]]--;
}
DFS(i,j+,now);//不选
}
int main(){
int t,i,j;
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
ans=;
for(i=;i<=n;i++){
for(j=;j<=m;j++)scanf("%d",&a[i][j]);
}
memset(can,,sizeof(can));
DFS(,,);
printf("%d\n",ans);
}
return ;
}

洛谷 P1123 取数游戏的更多相关文章

  1. 洛谷——P1123 取数游戏

    P1123 取数游戏 题目描述 一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻8个格子中的一个即认为这两个数字相邻),求取 ...

  2. 洛谷 p1123 取数游戏【dfs】

    题目链接:https://www.luogu.org/problemnew/show/P1123 转载于:>>>>>> 题目描述 一个N×M的由非负整数构成的数字矩 ...

  3. 洛谷P1123取数游戏题解

    题目 这是一道简单的搜索题,考查的还是比较基础的东西,其时搜索有时候并不难写,主要是要想到怎么搜.比如这个题,如果想二维四个方向搜则没有头绪,反之因为搜索是用递归实现的,所以我们可以使用递归的特性,把 ...

  4. 洛谷P1288 取数游戏II(博弈)

    洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...

  5. 洛谷P1288 取数游戏II[博弈论]

    题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...

  6. 洛谷P1288 取数游戏II

    题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...

  7. 洛谷1288 取数游戏II

    原题链接 因为保证有\(0\)权边,所以整个游戏实际上就是两条链. 很容易发现当先手距离\(0\)权边有奇数条边,那么必胜. 策略为:每次都将边上权值取光,逼迫后手向\(0\)权边靠拢.若此时后手不取 ...

  8. 洛谷P1288 取数游戏II 题解 博弈论

    题目链接:https://www.luogu.org/problem/P1288 首先,如果你的一边的边是 \(0\) ,那么你肯定走另一边. 那么你走另一边绝对不能让这条边有剩余,因为这条边有剩余的 ...

  9. 洛谷 P1288 取数游戏II

    奇奇怪怪的游戏,不多写了 #include<cstdio> ]; int main() { int i; scanf("%d",&n); ;i<=n;i+ ...

随机推荐

  1. 004.RAID删除

    一 卸载RAID [root@kauai ~]# umount /dev/md0 #卸载挂载点 二 停止RAID设备 [root@kauai ~]# mdadm -S /dev/md0 #停用RAID ...

  2. 基于js的自适应、多样式轮播图插件(兼容IE8+、FF、chrome等主流浏览器)

    插件github地址:https://github.com/pomelott/slider-plug_in 使用方式: slider plug-in 左右滑动的自适应.多样式全能插件.多次调用时只需传 ...

  3. WebSocket In ASP.NET Core(一)

    .NET-Core Series Server in ASP.NET-Core DI in ASP.NET-Core Routing in ASP.NET-Core Error Handling in ...

  4. 【Ray Tracing The Next Week 超详解】 光线追踪2-2

    Chapter 2:Bounding Volume Hierarchies 今天我们来讲层次包围盒,乍一看比较难,篇幅也多,但是咱们一步一步来,相信大家应该都能听懂 BVH 和 Perlin text ...

  5. AFO 我的oi生涯 大结局

    今儿个哥几个一屋子退役了,这两天也许会写一个生涯大结局留作纪念吧. 今天就写了吧. 由于在机房的原因比一般同学获得的知识更多一些.进来总是看新闻,感慨颇多.自从两会开的第一天起,我就对我们政府采取的一 ...

  6. BZOJ1768 : [Ceoi2009]logs

    从上到下枚举行,可以$O(m)$更新现在每一列往上连续的1的个数,也可以在$O(m)$的时间内完成排序.总复杂度$O(nm)$. #include<cstdio> #define M 15 ...

  7. bzoj 3285 离散对数解指数方程

    /************************************************************** Problem: 3285 User: idy002 Language: ...

  8. java ftp上载下传 遇到的问题

    1.下载文件中文乱码,和下载文件大小为0kb /** * Description: 从FTP服务器下载文件 * * @param url * FTP服务器hostname * @param port ...

  9. Python包管理工具pip安装

    Python版本在2.7.9+以上的都自带pip无需安装,但在CentOS 7里面自带的Python是2.7.5,所以需要单独安装. 安装: curl https://bootstrap.pypa.i ...

  10. loading加载和layer.js

    layer.js中的loading加载 l本篇主要介绍layerjs中的loading加载在实际项目中的应用 1.使用的技术 前端:HTML5+CSS3+JS+layer.js 后端:.net 2.遇 ...