就是给了六个关于圆的算法。实现它们。

注意的是,不仅输出格式那个符号什么的要一样。坐标的顺序也要从小到大……

基本上没考虑什么精度的问题,然后就过了。

大白鼠又骗人。也许我的方法比較好?

我的做法就是列方程+旋转+平移

我的代码:

#include<iostream>
#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const double eps=1e-7;
const double pi=acos(-1.0);
int dcmp(double x){return fabs(x)<eps?0:x<0?-1:1;}
struct dot
{
double x,y;
dot(){}
dot(double a,double b){x=a;y=b;}
dot operator +(dot a){return dot(x+a.x,y+a.y);}
dot operator -(dot a){return dot(x-a.x,y-a.y);}
dot operator *(double a){return dot(x*a,y*a);}
double operator *(dot a){return x*a.y-y*a.x;}
dot operator /(double a){return dot(x/a,y/a);}
double operator /(dot a){return x*a.x+y*a.y;}
bool operator ==(dot a){return x==a.x&&y==a.y;}
void in(){scanf("%lf%lf",&x,&y);}
void out(){printf("%f %f\n",x,y);}
dot norv(){return dot(-y,x);}
dot univ(){double a=mod();return dot(x/a,y/a);}
dot ro(double a){return dot(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a));}
double mod(){return sqrt(x*x+y*y);}
double dis(dot a){return sqrt(pow(x-a.x,2)+pow(y-a.y,2));}
};
bool operator >(dot a,dot b)
{
return dcmp(a.x-b.x)!=0? a.x>b.x:a.y>b.y;
}
struct fun
{
double a,b,c;
fun(){}
fun(double x,double y,double z){a=x;b=y;c=z;}
fun(dot d,dot e){a=e.y-d.y;b=d.x-e.x;c=d.x*e.y-d.y*e.x;}
dot sf(fun d)
{
double e,f,g;
e=dot(a,d.a)*dot(b,d.b);
f=dot(c,d.c)*dot(b,d.b);
g=dot(a,d.a)*dot(c,d.c);
return dot(f/e,g/e);
}
void in(){scanf("%lf%lf%lf",&a,&b,&c);}
void out(){printf("%f %f %f\n",a,b,c);}
};
void solve1(dot a,dot b,dot c)
{
dot g;
fun e,f;
double r;
e=fun((a+b)/2,(a+b)/2+(a-b).norv());
f=fun((a+c)/2,(a+c)/2+(a-c).norv());
g=e.sf(f);
r=g.dis(a);
printf("(%.6lf,%.6lf,%.6lf)\n",g.x,g.y,r);
}
void solve2(dot a,dot b,dot c)
{
double e,d,f,g,r;
fun h,i;
dot j;
d=a.dis(b);
e=a.dis(c);
f=b.dis(c);
g=acos((d*d+e*e-f*f)/2/d/e)/2;
if(dcmp((b-a)*(c-a))>0)
h=fun(a,(b-a).ro(g)+a);
else
h=fun(a,(c-a).ro(g)+a);
g=acos((e*e+f*f-d*d)/2/e/f)/2;
if(dcmp((a-c)*(b-c))>0)
i=fun(c,(a-c).ro(g)+c);
else
i=fun(c,(b-c).ro(g)+c);
j=h.sf(i);
r=fabs((j-a)*(b-a)/a.dis(b));
printf("(%.6lf,%.6lf,%.6lf)\n",j.x,j.y,r);
}
double cg(dot a)
{
double b=atan2(a.y,a.x);
b=b/pi*180;
return dcmp(b)<0? b+180:dcmp(b-180)!=0?b:0;
}
void solve3(dot a,double r,dot p)
{
dot d,g;
double b,c,e,f;
b=a.dis(p);
c=asin(r/b);
if(dcmp(b-r)<0)
printf("[]\n");
else if(dcmp(b-r)==0)
{
d=(p-a).norv();
e=cg(d);
printf("[%.6f]\n",e);
}
else
{
d=(a-p).ro(c);
g=(a-p).ro(2*pi-c);
e=cg(d);
f=cg(g);
if(e>f)swap(e,f);
printf("[%.6f,%.6f]\n",e,f);
}
}
void solve4(dot p,dot a,dot b,double r)
{
double d,e;
dot c,f,g;
c=fun(a,b).sf(fun(p,p+(a-b).norv()));
d=p.dis(c);
if(dcmp(d-2*r)>0) printf("[]\n");
else if(dcmp(d)==0)
{
f=p+(a-b).norv().univ()*r;
g=p-(a-b).norv().univ()*r;
if(f>g)swap(f,g);
printf("[(%.6f,%.6f),(%.6f,%.6f)]\n",f.x,f.y,g.x,g.y);
}
else if(dcmp(d-2*r)==0)
{
f=(p+c)/2;
printf("[(%.6f,%.6f)]\n",f.x,f.y);
}
else
{
e=acos((d-r)/r);
f=((c-p).univ()*r).ro(e)+p;
e=-e;
g=((c-p).univ()*r).ro(e)+p;
if(f>g)swap(f,g);
printf("[(%.6f,%.6f),(%.6f,%.6f)]\n",f.x,f.y,g.x,g.y);
}
}
void solve5(dot a,dot b,dot c,dot d,double r)
{
dot i,j,k,l;
double t1,t2;
fun e,f,g,h;
e=fun(a,b);
f=fun(c,d);
t1=sqrt(pow(e.a,2)+pow(e.b,2));
t2=sqrt(pow(f.a,2)+pow(f.b,2));
g=fun(e.a/t1,e.b/t1,e.c/t1+r);
h=fun(f.a/t2,f.b/t2,f.c/t2+r);
i=g.sf(h);
g.c=e.c/t1-r;j=g.sf(h);
h.c=f.c/t2-r;k=g.sf(h);
g.c=e.c/t1+r;l=g.sf(h);
if(i>j)swap(i,j);
if(i>k)swap(i,k);
if(i>l)swap(i,l);
if(j>k)swap(j,k);
if(j>l)swap(j,l);
if(k>l)swap(k,l);
printf("[(%.6f,%.6f),(%.6f,%.6f),(%.6f,%.6f),(%.6f,%.6f)]\n",
i.x,i.y,j.x,j.y,k.x,k.y,l.x,l.y);
}
void solve6(dot a,double r1,dot b,double r2,double r)
{
dot f,g;
double c,d,e,h;
c=a.dis(b);
d=r1+r;
e=r2+r;
if(dcmp(c-r-r-r1-r2)>0)
printf("[]\n");
else if(dcmp(c-r-r-r1-r2)==0)
{
f=a+(b-a).univ()*(r1+r);
printf("[(%.6f,%.6f)]\n",f.x,f.y);
}
else
{
h=acos((c*c+d*d-e*e)/2/c/d);
f=((b-a).univ()*(r1+r)).ro(h)+a;
h=-h;
g=((b-a).univ()*(r1+r)).ro(h)+a;
if(f>g)swap(f,g);
printf("[(%.6f,%.6f),(%.6f,%.6f)]\n",f.x,f.y,g.x,g.y);
}
}
int main()
{
char s[100];
dot a,b,c,d;
double r,r1,r2;
while(scanf("%s",s)!=EOF)
{
if(strcmp(s,"CircumscribedCircle")==0)
{
a.in();b.in();c.in();
solve1(a,b,c);
}
else if(strcmp(s,"InscribedCircle")==0)
{
a.in();b.in();c.in();
solve2(a,b,c);
}
else if(strcmp(s,"TangentLineThroughPoint")==0)
{
a.in();cin>>r;b.in();
solve3(a,r,b);
}
else if(strcmp(s,"CircleThroughAPointAndTangentToALineWithRadius")==0)
{
a.in();b.in();c.in();cin>>r;
solve4(a,b,c,r);
}
else if(strcmp(s,"CircleTangentToTwoLinesWithRadius")==0)
{
a.in();b.in();c.in();d.in();cin>>r;
solve5(a,b,c,d,r);
}
else
{
a.in();cin>>r1;b.in();cin>>r2;cin>>r;
solve6(a,r1,b,r2,r);
}
}
/*solve1(dot(0,0),dot(20,1),dot(8,17));
solve2(dot(0,0),dot(20,1),dot(8,17));
solve3(dot(200,200),100,dot(40,150));
solve3(dot(200,200),100,dot(200,100));
solve3(dot(200,200),100,dot(270,210));
solve4(dot(100,200),dot(75,190),dot(185,65),100);
solve4(dot(75,190),dot(75,190),dot(185,65),100);
solve4(dot(100,300),dot(100,100),dot(200,100),100);
solve4(dot(100,300),dot(100,100),dot(200,100),99);
solve5(dot(50,80),dot(320,190),dot(85,190),dot(125,40),30);
solve6(dot(120,200),50,dot(210,150),30,25);
solve6(dot(100,100),80,dot(300,250),70,50);*/
}

Description

Problem E

2D Geometry 110 in 1!

This is a collection of 110 (in binary) 2D geometry problems.

CircumscribedCircle x1 y1 x2 y2 x3 y3

Find out the circumscribed circle of triangle (x1,y1)-(x2,y2)-(x3,y3). These three points are guaranteed to be non-collinear. The circle is formatted as (x,y,r) where (x,y) is the center of circle, r is the radius.

InscribedCircle x1 y1 x2 y2 x3 y3

Find out the inscribed circle of triangle (x1,y1)-(x2,y2)-(x3,y3). These three points are guaranteed to be non-collinear. The circle is formatted as (x,y,r) where (x,y) is the center of circle, r is the radius.

TangentLineThroughPoint xc yc r xp yp

Find out the list of tangent lines of circle centered (xc,yc) with radius r that pass through point (xp,yp). Each tangent line is formatted as a single real number "angle" (in degrees), the angle of the line (0<=angle<180). Note that the answer should be
formatted as a list (see below for details).


CircleThroughAPointAndTangentToALineWithRadius xp yp x1 y1 x2 y2 r

Find out the list of circles passing through point (xp, yp) that is tangent to a line (x1,y1)-(x2,y2) with radius r. Each circle is formatted as (x,y), since the radius is already given. Note that the answer should be formatted as a list. If there is no
answer, you should print an empty list.


CircleTangentToTwoLinesWithRadius x1 y1 x2 y2 x3 y3 x4 y4 r

Find out the list of circles tangent to two non-parallel lines (x1,y1)-(x2,y2) and (x3,y3)-(x4,y4), having radius r. Each circle is formatted as (x,y), since the radius is already given. Note that the answer should be formatted as a list. If there is no
answer, you should print an empty list.


CircleTangentToTwoDisjointCirclesWithRadius x1 y1 r1 x2 y2 r2 r

Find out the list of circles externally tangent to two disjoint circles (x1,y1,r1) and (x2,y2,r2), having radius r. By "externally" we mean it should not enclose the two given circles. Each circle is formatted as (x,y), since the radius is already given.
Note that the answer should be formatted as a list. If there is no answer, you should print an empty list.

For each line described above, the two endpoints will not be equal. When formatting a list of real numbers, the numbers should be sorted in increasing order; when formatting a list of (x,y) pairs, the pairs should be sorted in increasing order of x. In case
of tie, smaller y comes first.

Input

There will be at most 1000 sub-problems, one in each line, formatted as above. The coordinates will be integers with absolute value not greater than 1000. The input is terminated by end of file (EOF).

Output

For each input line, print out your answer formatted as stated in the problem description. Each number in the output should be rounded to six digits after the decimal point. Note that the list should be enclosed by square brackets, and tuples should be enclosed
by brackets. There should be no space characters in each line of your output.

Sample Input

CircumscribedCircle 0 0 20 1 8 17
InscribedCircle 0 0 20 1 8 17
TangentLineThroughPoint 200 200 100 40 150
TangentLineThroughPoint 200 200 100 200 100
TangentLineThroughPoint 200 200 100 270 210
CircleThroughAPointAndTangentToALineWithRadius 100 200 75 190 185 65 100
CircleThroughAPointAndTangentToALineWithRadius 75 190 75 190 185 65 100
CircleThroughAPointAndTangentToALineWithRadius 100 300 100 100 200 100 100
CircleThroughAPointAndTangentToALineWithRadius 100 300 100 100 200 100 99
CircleTangentToTwoLinesWithRadius 50 80 320 190 85 190 125 40 30
CircleTangentToTwoDisjointCirclesWithRadius 120 200 50 210 150 30 25
CircleTangentToTwoDisjointCirclesWithRadius 100 100 80 300 250 70 50

Output for the Sample Input

(9.734940,5.801205,11.332389)
(9.113006,6.107686,5.644984)
[53.977231,160.730818]
[0.000000]
[]
[(112.047575,299.271627),(199.997744,199.328253)]
[(-0.071352,123.937211),(150.071352,256.062789)]
[(100.000000,200.000000)]
[]
[(72.231286,121.451368),(87.815122,63.011983),(128.242785,144.270867),(143.826621,85.831483)]
[(157.131525,134.836744),(194.943947,202.899105)]
[(204.000000,178.000000)]

Rujia Liu's Present 4: A Contest Dedicated to Geometry and CG Lovers

Special Thanks: Di Tang and Yi Chen

Source

Root :: Prominent Problemsetters :: Rujia Liu



Root :: Rujia Liu's Presents :: Present 4: Dedicated to Geometry and CG Lovers

Root :: AOAPC I: Beginning Algorithm Contests -- Training Guide (Rujia Liu) :: Chapter 4. Geometry :: Geometric Computations in 2D ::
Examples

UVA12304-2D Geometry 110 in 1!的更多相关文章

  1. UVA-12304 2D Geometry 110 in 1! (有关圆的基本操作)

    UVA-12304 2D Geometry 110 in 1! 该问题包含以下几个子问题 CircumscribedCircle x1 y1 x2 y2 x3 y3 : 三角形外接圆 Inscribe ...

  2. UVA12304 2D Geometry 110 in 1! 计算几何

    计算几何: 堆几何模版就能够了. . .. Description Problem E 2D Geometry 110 in 1! This is a collection of 110 (in bi ...

  3. UVA 12304 - 2D Geometry 110 in 1! - [平面几何基础题大集合][计算几何模板]

    题目链接:https://cn.vjudge.net/problem/UVA-12304 题意: 作为题目大合集,有以下一些要求: ①给出三角形三个点,求三角形外接圆,求外接圆的圆心和半径. ②给出三 ...

  4. UVa 12304 (6个二维几何问题合集) 2D Geometry 110 in 1!

    这个题能1A纯属运气,要是WA掉,可真不知道该怎么去调了. 题意: 这是完全独立的6个子问题.代码中是根据字符串的长度来区分问题编号的. 给出三角形三点坐标,求外接圆圆心和半径. 给出三角形三点坐标, ...

  5. Uva 12304 - 2D Geometry 110 in 1!

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  6. [GodLove]Wine93 Tarining Round #9

    比赛链接: http://vjudge.net/contest/view.action?cid=48069#overview 题目来源: lrj训练指南---二维几何计算   ID Title Pro ...

  7. .Uva&LA部分题目代码

    1.LA 5694 Adding New Machine 关键词:数据结构,线段树,扫描线(FIFO) #include <algorithm> #include <cstdio&g ...

  8. uva 12304点与直线与圆之间的关系

    Problem E 2D Geometry 110 in 1! This is a collection of 110 (in binary) 2D geometry problems. Circum ...

  9. (转) [it-ebooks]电子书列表

    [it-ebooks]电子书列表   [2014]: Learning Objective-C by Developing iPhone Games || Leverage Xcode and Obj ...

随机推荐

  1. 【配置】Spring Struts配置信息

  2. Gson学习记录

    Gson是Google开发来用来序列化和反序列化json格式数据的java库,他最大的特点就是对复杂类型的支持度高,可以完美解决java泛型问题,这得益于他对泛型类型数据的特殊处理,他的缺点就是速度慢 ...

  3. CRT/LCD/VGA Information and Timing【转】

    转自:http://www.cnblogs.com/shangdawei/p/4760933.html 彩色阴极射线管的剖面图: 1. 电子QIANG Three Electron guns (for ...

  4. mac ssh 自动登陆设置

    1.首先找到.ssh目录 一般在用户名目录下. ls -a查看 如果没有就重新创建一个 chennan@bogon :mkdir .ssh chennan@bogon 查看当前的 bogon:.ssh ...

  5. python中open函数的用法

    用法如下: name = open('errname.txt','w')name.readline()name.close() 1.看下第一行的代码 用来访问磁盘中存放的文件,可以进行读写等操作,例如 ...

  6. 使用netperf测试网络性能

    1.安装netperf 1)获取netperf安装包 netperf-2.7.0.tar.bz2 2)解压到本地目录 3)进入netperf-2.7.0,执行:./configure 4)编译执行:m ...

  7. ASP.NET MVC环境下实现一个网站多个网站模板的方法

    asp.net mvc下实现多个网站模板的方法,让ASP.NET一个网站有多套网站模板,不用的场景下使用不用的mvc 模版.  比如有默认,红,蓝,绿几种网站模板,客户可以根据自己喜好选择自己喜欢的网 ...

  8. css-实现图标在输入框中显示

    一:JavaScript 是脚本语言 JavaScript 是一种轻量级的编程语言. JavaScript 是可插入 HTML 页面的编程代码. JavaScript 插入 HTML 页面后,可由所有 ...

  9. Kaggle案例分析3--Bag of Words Meets Bags of Popcorn

    项目描述:这是一个关于情感分析的教程.谷歌的Word2Vec(文本深度表示模型)是一个由深度学习驱动的方法, 旨在获取words内部的含义.Word2Vec试图理解单词之间的含义与语义关系.它类似于r ...

  10. java Foreach与迭代器

    foreach语法主要用于数组,但是它也可以用于Collection对象,下面是一个示例 package object; //: holding/ForEachCollections.java // ...