http://poj.org/problem?id=1776

题意:

有一个机器要完成N个作业,

给你一个N*N的矩阵,

M[i][j]=1,表示完成第i个作业后不用重启机器,继续去完成第j个作业

M[i][j]=0,表示如果做完第i个作业,想要继续去做第j个作业,那么必须重启机器

对于任意两个作业都有M[i][j] = 1或者M[j][i] = 1.

求出完成这N个作业启动机器的最少次数,以及每次启动完成作业的数量和这些作业的顺序

初始时机器处于关闭状态.

将M当做图,就是找最少的路径条数覆盖所有的点

最小路径覆盖?

但不能保证图是二分图,所以不能用匈牙利算法

题目中说对于任意两个作业都有M[i][j] = 1或者M[j][i] = 1

所以这张图是在竞赛图的基础上加了几条边

而竞赛图一定存在一条哈密顿通路

所以一定只需要一次开机完成所有作业

然后就是输出竞赛图上的一条哈密顿通路

详请参见文章http://www.cnblogs.com/TheRoadToTheGold/p/8439160.html

#include<cstdio>
#include<cstring>
#include<iostream> using namespace std; #define N 1001 int n;
char s[N<<];
int e[N][N]; int front,nxt[N]; int st[N]; void Hamilton()
{
front=;
memset(nxt,,sizeof(nxt));
for(int i=;i<=n;++i)
{
if(e[front][i])
{
nxt[i]=front;
front=i;
continue;
}
int j,k;
for(j=front;j;k=j,j=nxt[j])
if(e[j][i])
{
nxt[i]=j;
nxt[k]=i;
break;
}
if(!j) nxt[k]=i;
}
} void print()
{
printf("1\n%d\n",n);
int now=front;
int top=;
while(now)
{
st[++top]=now;
now=nxt[now];
}
for(int i=top;i>;--i) printf("%d ",st[i]);
printf("%d\n",st[]);
} int main()
{
while(scanf("%d",&n)!=EOF)
{
memset(e,false,sizeof(e));
for(int i=;i<=n;++i)
{
getchar();
scanf("%[^\n]",s);
int t=;
for(int j=;t<n;j+=) e[i][++t]=s[j]-'';
}
Hamilton();
print();
}
}
Task Sequences
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 2637   Accepted: 763   Special Judge

Description

Tom has received a lot of tasks from his boss, which are boring to deal with by hand. Fortunately,Tom got a special machine - Advanced Computing Machine (ACM) to help him. 
ACM works in a really special way. The machine can finish one task in a short time, after it's finishing one task, it should smoothly move to the next one, otherwise the machine will stop automatically. You must start it up again to make it continue working. Of course, the machine cannot move arbitrarily from one task to another. So each time before it starts up, one task sequence should be well scheduled. Specially, a single task also can be regarded as a sequence. In the sequence, the machine should be able to smoothly move from one task to its successor (if exists). After started up, the machine always works according to the task sequence, and stops automatically when it finishes the last one. If not all the tasks have been finished, the machine has to start up again and works according to a new sequence. Of course, the finished tasks can't be scheduled again. 
For some unknown reasons, it was guaranteed that for any two tasks i and j, the machine can smoothly move from i to j or from j to i or both. Because the startup process is quite slow, Tom would like to schedule the task sequences properly, so that all the tasks can be completed with minimal number of startup times. It is your task to help him achieve this goal.

Input

Input contains several testcases. For each testcase, the first line contains only one integer n, (0 < n <= 1,000), representing the number of tasks Tom has received. Then n lines follow. Each line contains n integers, 0 or 1, separated by white spaces. If the jth integer in the ith line is 1, then the machine can smoothly move from task i to task j, otherwise the machine can not smoothly move from task i to task j. The tasks are numbered from 1 to n. 
Input is terminated by end of file.

Output

For each testcase, the first line of output is only one integer k, the minimal number of startup times needed. And 2k lines follow, to describe the k task sequences. For each task sequence, the first line should contain one integer m, representing the number of tasks in the sequence. And the second line should contain m integers, representing the order of the m tasks in the sequence. Two consecutive integers in the same line should be separated by just one white space. Extra spaces are not allowed. There may be several solutions, any appropriate one is accepted.

Sample Input

3
0 1 1
1 0 1
0 0 0

Sample Output

1
3
2 1 3

Source

poj 1776 Task Sequences的更多相关文章

  1. POJ 1776 Task Sequences(竞赛图构造哈密顿通路)

    链接:http://poj.org/problem?id=1776 本文链接:http://www.cnblogs.com/Ash-ly/p/5458635.html 题意: 有一个机器要完成一个作业 ...

  2. POJ 1239 Increasing Sequences 动态规划

    题目链接: http://poj.org/problem?id=1239 Increasing Sequences Time Limit: 1000MSMemory Limit: 10000K 问题描 ...

  3. POJ 3553 Task schedule

    原题链接:http://poj.org/problem?id=3553 这道题主要就是贪心思想吧,对于每个job,根据其截止时间 dj 从小到大排序,我们必须要尽快把dj最小的job完成掉,这样才能使 ...

  4. POJ 1239 Increasing Sequences(经典的两次dp)

    http://poj.org/problem?id=1239 题意:给出一串序列,现在要添加逗号作为分隔符,使得序列是递增序列,然后让最后一个数尽量小,第一个数尽量大. 思路:先从头到尾进行一次dp, ...

  5. POJ 3553 Task schedule【拓扑排序 + 优先队列 / 贪心】

    Task schedule Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 515 Accepted: 309 Special J ...

  6. poj 2034 Anti-prime Sequences(dfs)

    //相邻的 2.3......d 之和都要不为素数 # include <algorithm> # include <stdio.h> using namespace std; ...

  7. UVALIVE 2954 Task Sequences

    竞赛图:图中的任意两点间有且仅有一条有向弧连接 求竞赛图中的哈密顿路的算法: 首先,由数学归纳法可证竞赛图在n>=2时必存在哈密顿路: (1)n=2时显然: (2)假设n=k时,结论成立,哈密顿 ...

  8. POJ 1239 Increasing Sequences [DP]

    题意:略. 思路:进行两次dp. 第一次dp从前向后,用dp[x]表示从第x位向前dp[x]位可构成一个数字,且与前面的数组符合题意要求.最后求的dp[n]即为最后一个数字的长度. 而题目还有要求,所 ...

  9. poj 动态规划题目列表及总结

    此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 11 ...

随机推荐

  1. WebService技术,服务端and客户端JDK-wsimport工具(一)

    使用webservice服务,需要了解几个名词:soap 简单对象协议.http+xml . WSDL 先看下代码结构: 服务端代码与客户端代码分别处于两不同的包中 一.服务端内容 服务端: @Web ...

  2. 小白之selenium+python关于cookies绕开登录2

    首先,由于新开始在博客园中写随笔,可能在内容的布局方面就不太懂,导致布局很丑,各位见谅,但是字还是原来的那字,内容还是原来的内容,少了点包装, 下面是对cookie的扩展知识 1.配置文件存储在哪里? ...

  3. C# List left join

    public class Test1 { public int ID { get; set; } public string Name { get; set; } } public class Tes ...

  4. 在Ubuntu虚拟机上安装DVWA

    学习资料来源:https://www.neddos.tech/?p=107 最后更新时间: 190122·17:41 1> 什么是DVWA(Damn Vulnerable Web Applica ...

  5. CentOS 7 Apache服务的安装与配置

    原文出处:http://blog.51cto.com/13525470/2070375 一.Apache简介 Apache 是一个知名的开源Web服务器.早期的Apache服务器由Apache Gro ...

  6. Linux内核分析——第二周学习笔记20135308

    第二周 操作系统是如何工作的 第一节 函数调用堆栈 存储程序计算机:是所有计算机基础的框架 堆栈:计算机中基础的部分,在计算机只有机器语言.汇编语言时,就有了堆栈.堆栈机制是高级语言可以运行的基础. ...

  7. 用户场景模拟+Spec

    场景模拟: Spec:  浏览包车信息-->登录-->选择包车城市-->选择去/回程-->选择路线-->预定-->选择包车日期-->出发时间和地点--> ...

  8. Daily Scrum - 12/01

    Meeting Minutes 今天重阳去和UI设计团队的人去讨论UI方面的事宜了,剩下的人主要还是在讨论文件输入输出的事.目前总算是能实现文件存取了,尽量在明天前把文件的格式内容都弄好. Burnd ...

  9. Postgresql迁移数据文件存放位置

    1. POSTGRESQL的安装 centos7 里面默认的pgsql的版本是 如果想用更高的版本需要执行以下如下的命令 rpm -ivh https://download.postgresql.or ...

  10. postman 官方 test 脚本样例

    Test examples 样例来源: https://learning.getpostman.com/docs/postman/scripts/test_examples/ Test scripts ...