bzoj千题计划279:bzoj4591: [Shoi2015]超能粒子炮·改
http://www.lydsy.com/JudgeOnline/problem.php?id=4591

最后的式子合并同类项

#include<cstdio>
#include<iostream> using namespace std; typedef long long LL; const int p=; int C[][],s[][]; template<typename T>
void read(T &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void pre()
{
C[][]=;
for(int i=;i<=p;++i)
{
C[i][]=;
for(int j=;j<=i;++j) C[i][j]=(C[i-][j-]+C[i-][j])%p;
}
for(int i=;i<=p;++i)
{
s[i][]=C[i][];
for(int j=;j<=p;++j) s[i][j]=(s[i][j-]+C[i][j])%p;
}
} int Lucas(LL n,LL m)
{
if(n<m) return ;
int ans=;
for(;m;n/=p,m/=p) ans=ans*C[n%p][m%p]%p;
return ans;
} int S(LL n,LL k)
{
if(k<) return ;
if(n<=p && k<=p) return s[n][k];
return (S(n%p,k%p)*Lucas(n/p,k/p)+S(n%p,p-)*S(n/p,k/p-))%p;
} int main()
{
int T;
LL n,k;
pre();
read(T);
while(T--)
{
read(n); read(k);
printf("%d\n",S(n,k));
}
}
bzoj千题计划279:bzoj4591: [Shoi2015]超能粒子炮·改的更多相关文章
- bzoj4591 [Shoi2015]超能粒子炮·改
Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...
- [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)
Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...
- BZOJ4591——[Shoi2015]超能粒子炮·改
1.题意:求 2.分析:公式恐惧症的同学不要跑啊QAQ 根据lucas定理-- 这一步大家都能懂吧,这是浅而易见的lucas定理转化过程,将每一项拆分成两项 那么下一步,我们将同类项合并 我们观察可以 ...
- [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)
大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...
- BZOJ4591 SHOI2015超能粒子炮·改(卢卡斯定理+数位dp)
注意到模数很小,容易想到使用卢卡斯定理,即变成一个2333进制数各位组合数的乘积.对于k的限制容易想到数位dp.可以预处理一发2333以内的组合数及组合数前缀和,然后设f[i][0/1]为前i位是否卡 ...
- bzoj4591 [Shoi2015]超能粒子炮·改——组合数学(+求阶乘逆元新姿势)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4591 这题不是很裸啊(所以我就不会了) 得稍微推导一下,看这个博客好了:https://bl ...
- 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)
[BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...
- Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 178 Solved: 70[Submit][Stat ...
- bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]
4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...
随机推荐
- linux AB web 性能测试工具
ab(选项)(参数) 选项 -A:指定连接服务器的基本的认证凭据: -c:指定一次向服务器发出请求数: -C:添加cookie: -g:将测试结果输出为“gnuolot”文件: -h:显示帮助信息: ...
- 异步编程之asyncio简单介绍
引言: python由于GIL(全局锁)的存在,不能发挥多核的优势,其性能一直饱受诟病.然而在IO密集型的网络编程里,异步处理比同步处理能提升成百上千倍的效率,弥补了python性能方面的短板. as ...
- centos 7:network: 正在打开接口 ens33: 错误:激活连接失败:No suitable device found for this connection.
Mar :: localhost systemd: Starting LSB: Bring up/down networking... Mar :: localhost network: 正在打开环回 ...
- CMake与MSVC工程化实践
CMake与MSVC工程化实践 CMake基础 cmake无疑是最流行的c++跨平台构建工具之一,关于cmake入门指南这里不再赘述,官方文档是最好的参考,这里通过一个例子简述构建一个工程常用的函数和 ...
- CDH 5.16.1 离线部署 & 通过 CDH 部署 Hadoop 服务
参考 Cloudera Enterprise 5.16.x Installing Cloudera Manager, CDH, and Managed Services Installation Pa ...
- Grin v0.5在Ubuntu下的安装和启动
Grin和bitcoin一样也是一种点对点的现金交易系统,但它通过零和验证算法,使得双方的交易金额不会被第三方知晓,让它在隐私保护方面更强.其官方的介绍是: 所有人的电子交易,没有审查或限制.并提出它 ...
- 软件工程 BUAAMOOC项目Postmortem结果
设想和目标 1.我们的软件要解决什么问题?是否定义的很清楚?是否对典型用户和典型场景有清晰的描述? 我们的软件是基于北航MOOC网站做的Android手机客户端,用于便捷的在学校里通过手机做到随时随地 ...
- Alpha 答辩总结
前言 作业发布 组长 成员 贡献比例 ★ 530 雨勤 23% 311 旭 23% 403 俊 18% 223 元 23% 437 海辉 13% 10天 Alpha 冲刺站立会议博客链接汇总 Alph ...
- An ''all'' model group must appear in a particle with...问题解决记录
场景: 最近在一个新项目的依赖包调整过程中,引入包之后,发现项目启动报错,一直启动不成功,经过查询和排查,发现是包对xml解析冲突的问题: 报错信息: [WARNING] Nested in org. ...
- Docker(二十四)-Docker使用Portainer搭建可视化界面
Portainer介绍 Portainer是Docker的图形化管理工具,提供状态显示面板.应用模板快速部署.容器镜像网络数据卷的基本操作(包括上传下载镜像,创建容器等操作).事件日志显示.容器控制台 ...