http://www.lydsy.com/JudgeOnline/problem.php?id=4591

最后的式子合并同类项

#include<cstdio>
#include<iostream> using namespace std; typedef long long LL; const int p=; int C[][],s[][]; template<typename T>
void read(T &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void pre()
{
C[][]=;
for(int i=;i<=p;++i)
{
C[i][]=;
for(int j=;j<=i;++j) C[i][j]=(C[i-][j-]+C[i-][j])%p;
}
for(int i=;i<=p;++i)
{
s[i][]=C[i][];
for(int j=;j<=p;++j) s[i][j]=(s[i][j-]+C[i][j])%p;
}
} int Lucas(LL n,LL m)
{
if(n<m) return ;
int ans=;
for(;m;n/=p,m/=p) ans=ans*C[n%p][m%p]%p;
return ans;
} int S(LL n,LL k)
{
if(k<) return ;
if(n<=p && k<=p) return s[n][k];
return (S(n%p,k%p)*Lucas(n/p,k/p)+S(n%p,p-)*S(n/p,k/p-))%p;
} int main()
{
int T;
LL n,k;
pre();
read(T);
while(T--)
{
read(n); read(k);
printf("%d\n",S(n,k));
}
}

bzoj千题计划279:bzoj4591: [Shoi2015]超能粒子炮·改的更多相关文章

  1. bzoj4591 [Shoi2015]超能粒子炮·改

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  2. [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  3. BZOJ4591——[Shoi2015]超能粒子炮·改

    1.题意:求 2.分析:公式恐惧症的同学不要跑啊QAQ 根据lucas定理-- 这一步大家都能懂吧,这是浅而易见的lucas定理转化过程,将每一项拆分成两项 那么下一步,我们将同类项合并 我们观察可以 ...

  4. [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)

    大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...

  5. BZOJ4591 SHOI2015超能粒子炮·改(卢卡斯定理+数位dp)

    注意到模数很小,容易想到使用卢卡斯定理,即变成一个2333进制数各位组合数的乘积.对于k的限制容易想到数位dp.可以预处理一发2333以内的组合数及组合数前缀和,然后设f[i][0/1]为前i位是否卡 ...

  6. bzoj4591 [Shoi2015]超能粒子炮·改——组合数学(+求阶乘逆元新姿势)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4591 这题不是很裸啊(所以我就不会了) 得稍微推导一下,看这个博客好了:https://bl ...

  7. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  8. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

  9. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

随机推荐

  1. HDU排序水题

    1040水题; These days, I am thinking about a question, how can I get a problem as easy as A+B? It is fa ...

  2. Python机器学习/LinearRegression(线性回归模型)(附源码)

    LinearRegression(线性回归) 2019-02-20  20:25:47 1.线性回归简介 线性回归定义: 百科中解释 我个人的理解就是:线性回归算法就是一个使用线性函数作为模型框架($ ...

  3. java计算器实验报告

    一.实验目的 1.熟悉java图形用户界面的设计原理和程序结构 2.能设计复核问题要求的图形用户界面程序 3.熟悉java awt和swing的组合 4.掌握常用组建的事件借口 5.会应用awt和sw ...

  4. Mininet安装

    Mininet 安装 根据SDNLAB上的实验进行安装.连接地址 需要注意的是切换到用户目录下进行clone github上的源码. 1.卸载之前安装的Mininet 最好是先到目录下看是否有这些文件 ...

  5. freopen stdout 真的更快?

    freopen stdout 真的更快? 在一次数独作业中,我发现大部分同学提交的代码中都使用 freopen 来将 stdout 重新指向目标文件进行文件输出操作.我感到十分好奇,关于 freope ...

  6. Alpha版本事后诸葛亮

    目录 设想和目标 计划 资源 变更管理 设计/实现 测试/发布 团队的角色,管理,合作 总结: 本小组和其他组的评分 分工和贡献分 全组讨论的照片 问题 第一组提问回答:爸爸饿了队 第二组提问回答:拖 ...

  7. MarkDown to PDF

    前面随便说说 之前在 windows 上一直习惯用 cmdmarkdown 把要写的东西写下来,再通过 typora 转成 pdf:现在很多时候在用 Ubuntu,需要把写完的作业转成 pdf 交上去 ...

  8. Alpha冲刺——day3

    Alpha冲刺--day3 作业链接 Alpha冲刺随笔集 github地址 团队成员 031602636 许舒玲(队长) 031602237 吴杰婷 031602220 雷博浩 031602634 ...

  9. Beta 冲刺 七

    团队成员 051601135 岳冠宇 031602629 刘意晗 031602248 郑智文 031602330 苏芳锃 031602234 王淇 项目进展 岳冠宇 昨天的困难 换了种方法写了搜索栏, ...

  10. centos 7 安装搜狗输入法

    1.安装alien依赖软件sudo yum install alien -y 2.安装依赖软件sudo yum install qtwebkit -ysudo yum install fcitx -y ...