题意

题目链接

Sol

非常有思维含量的一道题,队爷的论文里介绍了一种\(N \sqrt{N}\)的暴力然鹅看不懂。。

看了一下clj的\(O(nlogn)\)的题解,又翻了翻题交记录,发现\(O(n)\)的做法也不是特别难。。

首先考虑所有两端颜色相同的非树边。直接对它的数量讨论:

若为\(0\),那么删哪一条都可以

若为\(1\),那么只能删该奇环上的边

若\(>1\),所有的非树边都不能删(不管怎么删都会有一个奇环),那么考虑所有的树边,一条树边能被删掉当且仅当:所有奇环都经过了这条边 且没有偶环经过了这条边

那么直接在树上打差分标记即可

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1e5 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, Pre[MAXN], even[MAXN], odd[MAXN], col[MAXN], cly, last, ans[MAXN], dep[MAXN];
struct Edge {
int u, v, id, nxt;
}E[MAXN];
int head[MAXN], num;
void AddEdge(int x, int y, int id) {
E[num] = (Edge) {x, y, id, head[x]};
head[x] = num++;
}
void dfs(int x, int fa) {
col[x] = col[fa] ^ 1; dep[x] = dep[fa] + 1;
for(int i = head[x]; ~i; i = E[i].nxt) {
int to = E[i].v;
if(col[to] == -1) {
Pre[to] = i; dfs(to, x);
even[x] += even[to];
odd[x] += odd[to];
} else if(dep[to] + 1 < dep[x]){
if(col[to] == col[x]) last = i, cly++, odd[x]++, odd[to]--;
else even[x]++, even[to]--;
}
}
}
int main() {
memset(head, -1, sizeof(head));
N = read(); M = read();
for(int i = 1; i <= M; i++) {
int x = read(), y = read();
AddEdge(x, y, i); AddEdge(y, x, i);
}
memset(col, -1, sizeof(col)); col[0] = 0;
for(int i = 1; i <= N; i++) if(col[i] == -1) dfs(i, 0);
if(cly == 0) {
printf("%d\n", M);
for(int i = 1; i <= M; i++) printf("%d ", i);
return 0;
}
if(cly == 1) ans[E[last].id] = 1;
for(int i = 1; i <= N; i++) if(odd[i] == cly && !even[i]) ans[E[Pre[i]].id] = 1;
int cnt = 0;
for(int i = 1; i <= M; i++) if(ans[i]) cnt++;
printf("%d\n", cnt);
for(int i = 1; i <= M; i++) if(ans[i]) printf("%d\n", i);
return 0;
}

cf19E. Fairy(奇环 二分图染色)的更多相关文章

  1. Hdu 5285 wyh2000 and pupil (bfs染色判断奇环) (二分图匹配)

    题目链接: BestCoder Round #48 ($) 1002 题目描述: n个小朋友要被分成两班,但是有些小朋友之间是不认得的,所以规定不能把不认识的小朋友分在一个班级里面,并且一班的人数要比 ...

  2. HDU - 3478 Catch(判奇环/二分图)

    http://acm.hdu.edu.cn/showproblem.php?pid=3478 题意 给一个无向图和小偷的起点,小偷每秒可以向相邻的点出发,问有没有一个时间点小偷可能出现在任何点. 分析 ...

  3. HDU3478 【判奇环/二分图的性质】

    题意: 给你一幅图,给你一个起点,然后问你存不存在一个时刻,所有点可以在那个时刻到达. 思路: 这幅图首先是联通的: 如果出现奇数环,则满足在某一时刻都可能到达: 然后判断奇数环用二分图性质搞也是神奇 ...

  4. POJ 2942 Knights of the Round Table 补图+tarjan求点双联通分量+二分图染色+debug

    题面还好,就不描述了 重点说题解: 由于仇恨关系不好处理,所以可以搞补图存不仇恨关系, 如果一个桌子上面的人能坐到一起,显然他们满足能构成一个环 所以跑点双联通分量 求点双联通分量我用的是向栈中pus ...

  5. Catch---hdu3478(染色法判断是否含有奇环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3478 题意:有n个路口,m条街,一小偷某一时刻从路口 s 开始逃跑,下一时刻都跑沿着街跑到另一路口,问 ...

  6. [cf557d]Vitaly and Cycle(黑白染色求奇环)

    题目大意:给出一个 n 点 m 边的图,问最少加多少边使其能够存在奇环,加最少边的情况数有多少种. 解题关键:黑白染色求奇环,利用数量分析求解. 奇环:含有奇数个点的环. 二分图不存在奇环.反之亦成立 ...

  7. poj2942 求v-DCC,二分图判奇环,补图

    /* 给定一张无向图,求有多少点不被任何奇环包含 推论1:如果两个点属于两个不同的v-DCC,则他们不可能在同一个奇环内 推论2:某个v-DCC中有奇环,则这个v-DCC中所有点必定被属于某个奇环 只 ...

  8. [LA3523/uva10195]圆桌骑士 tarjan点双连通分量+奇环定理+二分图判定

    1.一个环上的各点必定在同一个点双连通分量内: 2.如果一个点双连通分量是二分图,就不可能有奇环: 最基本的二分图中的一个环: #include<cstdio> #include<c ...

  9. 【POJ 2942】Knights of the Round Table(双联通分量+染色判奇环)

    [POJ 2942]Knights of the Round Table(双联通分量+染色判奇环) Time Limit: 7000MS   Memory Limit: 65536K Total Su ...

随机推荐

  1. pringboot+mybatis+redis+cookie单点登录

    一.基本思路 单点sso用于多系统分布式,当多个系统分布式部署后,当然需要统一的登录接口.sso应运而生. 可以想见,单点应该是提供一个服务给其他系统,当其他系统需要验证登录状态的时候,调用服务,就可 ...

  2. python学习笔记12-深浅拷贝

    以上为浅拷贝. .copy()函数 赋值:数据完全共享(=赋值是在内存中指向同一个对象,如果是可变(mutable)类型,比如列表,修改其中一个,另一个必定改变 如果是不可变类型(immutable) ...

  3. switch...case... 语句中的类型转换

    switch语句对case表达式的结果类型有如下要求: 要求case表达式的结果能转换为switch表示式结果的类型 并且如果switch或case表达式的是无类型的常量时,会被自动转换为此种常量的默 ...

  4. Runtime 全方位装逼指南

    Runtime是什么?见名知意,其概念无非就是“因为 Objective-C 是一门动态语言,所以它需要一个运行时系统……这就是 Runtime 系统”云云.对博主这种菜鸟而言,Runtime 在实际 ...

  5. iPhone X Web 设计

    原文地址:https://webkit.org/blog/7929/designing-websites-for-iphone-x/ 开箱即用(开发者无需进行任何设置),在iPhone X中,Safa ...

  6. 关于并发用户数的思考-通过PV量换算并发

    首先介绍一下pv量:PV(访问量):即Page View, 即页面浏览量或点击量,用户每次刷新即被计算一次.UV(独立访客):即Unique Visitor,访问您网站的一台电脑客户端为一个访客.00 ...

  7. odoo 默认显示字段

    @api.multi def generate_customs_declaration(self): # if len(self.mapped('cus_goods_list_ids')) != 1: ...

  8. 【原创】用JQury来制作星星打分特效功能

    前言 常常我们看到一些评论,星星打分,今天我们就用Jq代码来实现,看看究竟是如何实现的 其中有两个重要的事件mouseenter和mouseleave效果如下图 代码 <!DOCTYPE htm ...

  9. docker 非root用户修改mount到容器的文件出现“Operation not permitted

    使用环境centos7 x86-64 内核版本4.19.9 docker使用非root用户启动,daemon.json配置文件内容如下: # cat daemon.json { "usern ...

  10. Java-Reflection反射-获取包括父类在内的所有字段

    前言 今天Android移动端要加个新功能,所以回归Android程序员的身份.开发的过程中,发现了之前的代码写的有很多问题,真的应该把时间抽出来重构一下了. 其中有反射的一个坑,工具类某方法反射获取 ...