洛谷题目传送门

太弱了不会树剖,觉得LCT好写一些,就上LCT乱搞,当LCT维护双连通分量的练手题好了

正序删边是不好来维护连通性的,于是就像水管局长那样离线处理,逆序完成操作

显然,每个点可以代表一个双连通分量,查询就是链的长度-1

连接一条边,如果在LCT中还没连通就link,如果连通了,显然这里会出现一个环,然后暴力缩点,可以把当前辅助树的根节点当做集合的标志节点,然后dfs整个辅助树,把链上的其它点的并查集祖先暴力改成这个标志节点,最后再断开标志节点与子树的连接。总的暴力修改次数不会超过\(N\log N\)次,复杂度是对的

但是点缩完了,那它们的子树不会指空吗?所以,access的时候,要更新\(x\)为\(geth(f[x])\)

至于常数,LCT也并不是很慢啊。反正有了O2还是可以做到很优秀的

代码细节很多,调试真心累TAT

#include<cstdio>
#include<algorithm>
using namespace std;
#define RG register
#define R RG short
#define I inline void
#define IB inline bool
#define IS inline short
#define G ch=getchar()
#define lc c[x][0]
#define rc c[x][1]
const int N=30009,M=100009;
short f[N],c[N][2],s[N],h[N],a[N],b[N],op[N],ans[M];
bool r[N],vis[M];
struct EDGE{//对边排序,方便查找该边是否被删除
short x,y;
IB operator<(const EDGE a)const{
return x<a.x||(x==a.x&&y<a.y);
}
}e[M];
template<typename T>
I in(RG T&z){
RG char G;
while(ch<'-')G;
z=ch&15;G;
while(ch>'-')z*=10,z+=ch&15,G;
}
IS geth(R x){
if(x==h[x])return x;
return h[x]=geth(h[x]);
}
IB nroot(R x){
return c[f[x]][0]==x||c[f[x]][1]==x;
}
I pushup(R x){
s[x]=s[lc]+s[rc]+1;
}
I pushdown(R x){
if(r[x]){
swap(lc,rc);
r[lc]^=1;r[rc]^=1;r[x]=0;
}
}
I pushall(R x){
if(nroot(x))pushall(f[x]);
pushdown(x);
}
I rotate(R x){
R y=f[x],z=f[y],k=c[y][1]==x,w=c[x][!k];
if(nroot(y))c[z][c[z][1]==y]=x;f[x]=z;
c[x][!k]=y;f[y]=x;
c[y][k]=w;f[w]=y;
pushup(y);
}
I splay(R x){
pushall(x);
R y;
while(nroot(x)){
if(nroot(y=f[x]))
rotate((c[f[y]][0]==y)^(c[y][0]==x)?x:y);
rotate(x);
}
pushup(x);
}
I access(R x){
for(R y=0;x;y=x,x=f[y]=geth(f[x]))//注意更新
splay(x),rc=y,pushup(x);
}
I makeroot(R x){
access(x);splay(x);
r[x]^=1;
}
IS findroot(R x){
access(x);splay(x);
pushdown(x);
while(lc)pushdown(x=lc);
splay(x);
return x;
}
I split(R x,R y){
makeroot(y);
access(x);splay(x);
}
I del(R x,R y){//函数递归缩点
if(x)h[x]=y,del(lc,y),del(rc,y);
}
I merge(R x,R y){
if(x==y)return;//在一个分量里什么都不用干
makeroot(x);
if(findroot(y)!=x){
f[x]=y;return;//等于link
}
del(rc,x);
rc=0;pushup(x);//缩点,删点
}
int main(){
RG int n,m,i,j;
R x,y;
in(n);in(m);
for(i=1;i<=n;++i)s[i]=1,h[i]=i;
for(i=1;i<=m;++i){
in(x);in(y);
if(x>y)swap(x,y);//强制编号,方便以后查找
e[i]=(EDGE){x,y};
}
sort(e+1,e+m+1);
for(j=1;in(op[j]),op[j]!=131;++j){
in(x);in(y);
if(!op[j]){
if(x>y)swap(x,y);
vis[lower_bound(e+1,e+m+1,(EDGE){x,y})-e]=1;
}//重载完小于号,直接二分找到,再打上删除记号
a[j]=x;b[j]=y;
}
for(i=1;i<=m;++i)
if(!vis[i])merge(geth(e[i].x),geth(e[i].y));
for(i=0,--j;j;--j){
x=geth(a[j]);y=geth(b[j]);
if(op[j])split(x,y),ans[++i]=s[x]-1;
else merge(x,y);
}
while(i)printf("%hd\n",ans[i--]);
return 0;
}

洛谷P2542 [AHOI2005]航线规划(LCT,双连通分量,并查集)的更多相关文章

  1. 洛谷 P2542 [AHOI2005]航线规划 解题报告

    P2542 [AHOI2005]航线规划 题目描述 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系--一个巨大的由千百万星球构成的Samuel星系 ...

  2. 洛谷 P2542 [AHOI2005]航线规划(Link-cut-tree)

    题面 洛谷 bzoj 题解 离线处理+LCT 有点像星球大战 我们可以倒着做,断边变成连边 我们可以把边变成一个点 连边时,如果两个点本身不联通,就\(val\)赋为\(1\),并连接这条边 如果,两 ...

  3. 洛谷 P2542 [AHOI2005]航线规划 树链剖分_线段树_时光倒流_离线

    Code: #include <map> #include <cstdio> #include <algorithm> #include <cstring&g ...

  4. P2542 [AHOI2005]航线规划 LCT维护双连通分量

    \(\color{#0066ff}{ 题目描述 }\) 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系--一个巨大的由千百万星球构成的Samuel ...

  5. BZOJ4998 星球联盟(LCT+双连通分量+并查集)

    即要求动态维护边双.出现环时将路径上的点合并即可.LCT维护.具体地,加边成环时makeroot+access+splay一套把这段路径提出来,暴力dfs修改并查集祖先,并将这部分与根断开,视为删除这 ...

  6. BZOJ 2959: 长跑 [lct 双连通分量 并查集]

    2959: 长跑 题意:字词加入边,修改点权,询问两点间走一条路径的最大点权和.不一定是树 不是树

  7. 洛谷P2661 信息传递(最小环,并查集)

    洛谷P2661 信息传递 最小环求解采用并查集求最小环. 只适用于本题的情况.对于新加可以使得两个子树合并的边,总有其中一点为其中一棵子树的根. 复杂度 \(O(n)\) . #include< ...

  8. [AHOI2005]航线规划——LCT维护边双联通分量

    因为只能支持加入一个边维护边双,所以时光倒流 维护好边双,每次就是提取出(x,y)的链,答案就是链长度-1 具体维护边双的话, void access(int x){ for(reg y=0;x;y= ...

  9. 洛谷OJ P1196 银河英雄传说(带权并查集)

    题目描述 公元五八○一年,地球居民迁移至金牛座α第二行星,在那里发表银河联邦 创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展. 宇宙历七九九年,银河系的两大军事集团在巴米利恩星域爆发战争.泰山 ...

随机推荐

  1. IP数据库

    免费的IP数据库,qqwry.dat文件:通过读文件来获取ip地址的地区信息: QQWry.Dat的格式如下: +----------+| 文件头 | (8字节)+----------+| 记录区 | ...

  2. R链接hive/oracle/mysql

    Linux:R连接hive用的Rhive 1,重要 1,sudo R CMD javareconf 2,sudo R 3, 1+1 是否为2 3.1,>install.packages(&quo ...

  3. 大数据入门第十八天——kafka整合flume、storm

    一.实时业务指标分析 1.业务 业务: 订单系统---->MQ---->Kakfa--->Storm 数据:订单编号.订单时间.支付编号.支付时间.商品编号.商家名称.商品价格.优惠 ...

  4. Spring3 访问静态资源

    <mvc:resources location="/jquery/" mapping="/jquery/**"/> <mvc:resource ...

  5. python基础2之字符串、列表、字典、集合

    内容概要: 一.python2 or 3 二.字符串拼接 三.字符串 四.列表.元祖 五.字典 六.集合 七.练习 一.python2 or python3 目前大多使用python2.7,随着时间的 ...

  6. Exp7 网络欺诈技术防范

    Exp7 网络欺诈技术防范 基础问题回答 1.通常在什么场景下容易受到DNS spoof攻击? 在同一局域网下比较容易受到DNS spoof攻击,攻击者可以冒充域名服务器,来发送伪造的数据包,从而修改 ...

  7. JavaScript 变量提升

    变量提升(Hoisting):在ES6之前,函数声明和变量声明总是被JavaScript解释器隐式地提升(hoist)到包含他们的作用域的最顶端. 注意: 1. JavaScript 仅提升声明,而不 ...

  8. R绘图 第八篇:绘制饼图(ggplot2)

    geom_bar()函数不仅可以绘制条形图,还能绘制饼图,跟绘制条形图的区别是坐标系不同,绘制饼图使用的坐标系polar,并且设置theta="y": coord_polar(th ...

  9. Express入门介绍vs实例讲解

    下午在团队内部分享了express相关介绍,以及基于express的实例.内容提纲如下. 什么是Express 为什么要用Express 路由规则 一切皆中间件 实例:Combo Applicatio ...

  10. Git的简单操作

    一.Git安装 windows下,可在在git官网下载(https://git-scm.com/downloads) 也有360提供的git(http://baoku.360.cn/soft/show ...