B. The Bakery
time limit per test

2.5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredients and a wonder-oven which can bake several types of cakes, and opened the bakery.

Soon the expenses started to overcome the income, so Slastyona decided to study the sweets market. She learned it's profitable to pack cakes in boxes, and that the more distinct cake types a box contains (let's denote this number as the value of the box), the higher price it has.

She needs to change the production technology! The problem is that the oven chooses the cake types on its own and Slastyona can't affect it. However, she knows the types and order of n cakes the oven is going to bake today. Slastyona has to pack exactly k boxes with cakes today, and she has to put in each box several (at least one) cakes the oven produced one right after another (in other words, she has to put in a box a continuous segment of cakes).

Slastyona wants to maximize the total value of all boxes with cakes. Help her determine this maximum possible total value.

Input

The first line contains two integers n and k (1 ≤ n ≤ 35000, 1 ≤ k ≤ min(n, 50)) – the number of cakes and the number of boxes, respectively.

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n) – the types of cakes in the order the oven bakes them.

Output

Print the only integer – the maximum total value of all boxes with cakes.

Examples
input

Copy
4 1
1 2 2 1
output

Copy
2
input

Copy
7 2
1 3 3 1 4 4 4
output

Copy
5
input

Copy
8 3
7 7 8 7 7 8 1 7
output

Copy
6
Note

In the first example Slastyona has only one box. She has to put all cakes in it, so that there are two types of cakes in the box, so the value is equal to 2.

In the second example it is profitable to put the first two cakes in the first box, and all the rest in the second. There are two distinct types in the first box, and three in the second box then, so the total value is 5.

思路:

dp[i][j]代表: 前j个数,分成i块的最大价值。

那么有状态转移方程: dp[i][j] = max(dp[i-1][k]+sum[k+1][j],dp[i][j])

记录下每个点上次出现的位置,存到last[]数组。

更新dp[i-1][1-n],将上一个状态的值存进线段树维护,因为每次状态变化的范围都是  last[j]-j,区间更新下就好了

实现代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define mid int m = (l + r) >> 1
const int M = 2e5+;
//jmqayxtl
int mx[M<<],lazy[M<<],dp[][M],a[M],last[M],vis[M]; void pushup(int rt){
mx[rt] = max(mx[rt<<],mx[rt<<|]);
} void pushdown(int rt){
if(lazy[rt]){
lazy[rt<<] += lazy[rt];
lazy[rt<<|] += lazy[rt];
mx[rt<<] += lazy[rt];
mx[rt<<|] += lazy[rt];
lazy[rt] = ;
}
} void build(int p,int l,int r,int rt){
lazy[rt] = ; mx[rt] = ;
if(l == r){
mx[rt] = dp[p][l-];
return ;
}
mid;
build(p,lson);
build(p,rson);
pushup(rt);
} void update(int L,int R,int c,int l,int r,int rt){
if(L <= l&&R >= r){
mx[rt] += c; lazy[rt] += c;
return ;
}
pushdown(rt);
mid;
if(L <= m) update(L,R,c,lson);
if(R > m) update(L,R,c,rson);
pushup(rt);
} int query(int L,int R,int l,int r,int rt){
if(L <= l&&R >= r){
return mx[rt];
}
pushdown(rt);
mid;
int ret = ;
if(L <= m) ret = max(query(L,R,lson),ret);
if(R > m) ret = max(query(L,R,rson),ret);
return ret;
} int main()
{
ios::sync_with_stdio();
cin.tie(); cout.tie();
int n,k;
cin>>n>>k;
for(int i = ;i <= n;i ++){
cin>>a[i];
last[i] = vis[a[i]];
vis[a[i]] = i;
}
for(int i = ;i <= k;i ++){
build(i-,,n,);
for(int j = ;j <= n;j ++){
update(last[j]+,j,,,n,);
dp[i][j] = query(,j,,n,);
cout<<i<<" "<<j<<" "<<dp[i][j]<<endl;
}
}
cout<<dp[k][n]<<endl;
}

Codeforces Round #426 (Div. 1) B The Bakery (线段树+dp)的更多相关文章

  1. Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP

    D. The Bakery   Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...

  2. Codeforces Round #587 (Div. 3) F Wi-Fi(线段树+dp)

    题意:给定一个字符串s 现在让你用最小的花费 覆盖所有区间 思路:dp[i]表示前i个全覆盖以后的花费 如果是0 我们只能直接加上当前位置的权值 否则 我们可以区间询问一下最小值 然后更新 #incl ...

  3. Codeforces Round #426 (Div. 2) D The Bakery(线段树 DP)

     The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard input ...

  4. Codeforces Round #603 (Div. 2) E. Editor(线段树)

    链接: https://codeforces.com/contest/1263/problem/E 题意: The development of a text editor is a hard pro ...

  5. Codeforces Round #244 (Div. 2) B. Prison Transfer 线段树rmq

    B. Prison Transfer Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/pro ...

  6. 【动态规划】【线段树】 Codeforces Round #426 (Div. 1) B. The Bakery

    给你一个序列,让你划分成K段,每段的价值是其内部权值的种类数,让你最大化所有段的价值之和. 裸dp f(i,j)=max{f(k,j-1)+w(k+1,i)}(0<=k<i) 先枚举j,然 ...

  7. Codeforces Round #546 (Div. 2) E 推公式 + 线段树

    https://codeforces.com/contest/1136/problem/E 题意 给你一个有n个数字的a数组,一个有n-1个数字的k数组,两种操作: 1.将a[i]+x,假如a[i]+ ...

  8. Codeforces Round #222 (Div. 1) D. Developing Game 线段树有效区间合并

    D. Developing Game   Pavel is going to make a game of his dream. However, he knows that he can't mak ...

  9. Codeforces Round #275 Div.1 B Interesting Array --线段树

    题意: 构造一个序列,满足m个形如:[l,r,c] 的条件. [l,r,c]表示[l,r]中的元素按位与(&)的和为c. 解法: 线段树维护,sum[rt]表示要满足到现在为止的条件时该子树的 ...

随机推荐

  1. HDU 2767 Proving Equivalences(至少增加多少条边使得有向图变成强连通图)

    Proving Equivalences Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  2. OC分类(类目/类别) 和 类扩展 - 全解析

    OC分类(类目/类别) 和 类扩展 - 全解析   具体见: oschina -> MyDemo -> 011.FoundationLog-OC分类剖析 http://blog.csdn. ...

  3. phpstorm开发环境搭建流程

    1.下载phpstorm 2.网上找注册码 phpstorm 8 license key Learn Programming===== LICENSE BEGIN =====63758-1204201 ...

  4. odoo权限

    ir.model.access.csv文件这里注意,用户和经理的写法 id,name,model_id:id,group_id:id,perm_read,perm_write,perm_create, ...

  5. 20155301 《网络攻防》 Exp5 MSF基础应用

    20155301 <网络攻防> Exp5 MSF基础应用 基础问题 1.用自己的话解释什么是exploit,payload,encode 答:exploit就是利用一些工具的,用来收集目标 ...

  6. 20155318 《网络攻防》 Exp9 Web基础

    20155318 <网络攻防> Exp9 Web基础 基础问题 SQL注入攻击原理,如何防御 就是通过把SQL命令插入到"Web表单递交"或"输入域名&quo ...

  7. 查看Oracle数据库中的,已经连接好的..当前用户状况

    参考: http://stackoverflow.com/questions/1043096/how-to-list-active-open-connections-in-oracle 以sys身份连 ...

  8. js中的数据类型及判断方法

    ECMAScirpt 变量有两种不同的数据类型:基本类型,引用类型. 基本类型 ● Boolean ● Null ● Undefined ● Number ● String ● Symbol (ECM ...

  9. [BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]

    题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \ ...

  10. 百炼1001: Exponentiation 解题

    链接:http://bailian.openjudge.cn/practice/1001/ 思路 乍一看是很简单的题目,但是答案必须高精度输出,因此需要手动实现一个高精度运算方法.如果直接使用int, ...