【Spark算子】:reduceByKey、groupByKey和combineByKey
在spark中,reduceByKey、groupByKey和combineByKey这三种算子用的较多,结合使用过程中的体会简单总结:
我的代码实践:https://github.com/wwcom614/Spark
•reduceByKey
用于对每个key对应的多个value进行merge操作,最重要的是它能够在本地先进行merge操作,并且merge操作可以通过函数自定义;

•groupByKey
也是对每个key进行操作,但只生成一个sequence,groupByKey本身不能自定义函数,需要先用groupByKey生成RDD,然后才能对此RDD通过map进行自定义函数操作。
使用groupByKey时,spark会将所有的键值对进行移动,不会进行局部merge,会导致集群节点之间的开销很大,导致传输延时。

•combineByKey
一个相对底层的基于键进行聚合的基础方法(因为大多数基于键聚合的方法,例如reduceByKey,groupByKey都是用它实现的),所以感觉这个方法还是挺重要的。
该方法的入参主要为前三个:
- createCombiner:遍历一个分区中每个元素,如果不存在,createCombiner创建累加器C,把原变量V放入,对相同K,把V合并成一个集合,例如将(key,88),映射建立集合(key,(88,1))
- mergeValue:遍历一个分区中每个元素,如果已存在,将相同的值累加,例如将(key,(88,1)),(key,(88,1)),mergeValue累加集合为(key,(88,2))
- mergeCombiners:createCombiner 和 mergeValue 是处理单个分区中数据, mergeCombiners是每个分区处理完了,多个分区合并数据使用,例如分区1累加集合值为(key,(88,2)),分区2累加集合值为(key,(88,3)),mergeCombiners累加集合为(key,(88,5))

写个求每个学生的平均成绩的例子
//2个学生及他们的成绩
val scoreList = Array(("ww1", 88), ("ww1", 95), ("ww2", 91), ("ww2", 93), ("ww2", 95), ("ww2", 98)) //将2个学生成绩转为RDD,分2个partition存储
val scoreRDD: RDD[(String, Int)] = sc.parallelize(scoreList, 2)
println("【scoreRDD.partitions.size】:" + scoreRDD.partitions.size)
//分区数,【scoreRDD.partitions.size】:2
println("【scoreRDD.glom.collect】:" + scoreRDD.glom().collect().mkString(",")) //每个分区的内容 //使用combineByKey,按每个学生累积分数和科目数量
val rddCombineByKey: RDD[(String, (Int, Int))] = scoreRDD.combineByKey(v => (v, 1),
(param1: (Int, Int), v) => (param1._1 + v, param1._2 + 1),
(p1: (Int, Int), p2: (Int, Int)) => (p1._1 + p2._1, p1._2 + p2._2))
println("【combineByKey】:" + rddCombineByKey.collect().mkString(","))
//【combineByKey】:(ww2,(377,4)),(ww1,(183,2)) //在map中使用case是scala的用法,按每个学生总成绩/科目数量,得到平均分
val avgScore = rddCombineByKey.map { case (key, value) => (key, value._1 / value._2.toDouble) }
println("【avgScore】:" + avgScore.collect().mkString(","))
//【avgScore】:(ww2,94.25),(ww1,91.5)
说明:
1.首先:各个分区createCombiner 和 mergeValue先干活
第一个分区遍历开始: 数据为
Array(("ww1", 88), ("ww1", 95), ("ww2", 91))
--> 处理(ww1,88), 因为是第一次遇到键“ww1”, 所以调用createCombiner方法 (v)=> (v,1) , 这里就是(ww1,88) =>( ww1, (88,1))
--> 处理(ww1,95),不是第一次遇到键“ww1”,所以会调用mergeValue方法(param1:(Int,Int),v)=>(param1._1+v,param1._2+1),这里就是(ww1,(88,1)),(ww1,95)=>(ww1,(88+95, 1+1))= (ww1,(183,2)) ---(成绩相加,科目数量+1)
--> 处理(ww2,91),因为是第一次遇到键“ww2”, 所以调用createCombiner方法 (v)=> (v,1) ,这里就是(ww2,91) => (ww2, (91,1))
第一个分区遍历结束:返回 (ww1,(183,2) ), ( ww2,(91,1))
第二个分区遍历开始: 数据为
Array(("ww2", 93), ("ww2", 95), ("ww2", 98))
--> 处理(ww2,93), 因为是第一次遇到键“ww2”, 所以调用createCombiner方法 (v)=> (v,1) ,这里就是(ww2,93 )=>(ww2, (93,1))
--> 处理(ww2,95),不是第一次遇到键“ww2”,所以会调用mergeValue方法(param1:(Int,Int),v)=>(param1._1+v,param1._2+1),这里就是(ww2,(93,1)),(ww2,95)=>(ww2,(93+95, 1+1))= (ww2,(188,2)) ---(成绩相加,科目数量+1)
--> 处理(ww2,98),不是第一次遇到键“ww2”,所以会调用mergeValue方法(param1:(Int,Int),v)=>(param1._1+v,param1._2+1),这里就是(ww2,(188,2)),(ww2,98)=>(ww2,(188+98, 2+1))= (ww2,(286,3) ) ---(成绩相加,科目数量+1)
第二个分区遍历结束:返回 (ww2,(286,3) )
2.然后:各个分区干完了, mergeCombiners方法汇总处理
--> 处理分区1的ww1,(183,2) ww2,(91,1) ,分区2的ww2,(286,3) , 会调用mergeCombiners方法(p1: (Int, Int), p2: (Int, Int)) => (p1._1 + p2._1, p1._2 + p2._2)),这里就是
( (ww1,(183,2)),(ww2,(91,1)) , (ww2,(286,3)) )=> ( (ww1,(183,2)) , (ww2,(91+286,1+3)) ) = ( (ww1,(183,2)) , (ww2,(377,4)) )
【Spark算子】:reduceByKey、groupByKey和combineByKey的更多相关文章
- Spark算子--reduceByKey
reduceByKey--Transformation类算子 代码示例 result
- (转)Spark 算子系列文章
http://lxw1234.com/archives/2015/07/363.htm Spark算子:RDD基本转换操作(1)–map.flagMap.distinct Spark算子:RDD创建操 ...
- Spark算子总结及案例
spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key-Value数据类型的Tran ...
- Spark算子总结(带案例)
Spark算子总结(带案例) spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key ...
- Spark算子使用
一.spark的算子分类 转换算子和行动算子 转换算子:在使用的时候,spark是不会真正执行,直到需要行动算子之后才会执行.在spark中每一个算子在计算之后就会产生一个新的RDD. 二.在编写sp ...
- Spark:常用transformation及action,spark算子详解
常用transformation及action介绍,spark算子详解 一.常用transformation介绍 1.1 transformation操作实例 二.常用action介绍 2.1 act ...
- UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现
UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现 测试数据 java代码 package com.hzf.spark.study; import ...
- UserView--第一种方式set去重,基于Spark算子的java代码实现
UserView--第一种方式set去重,基于Spark算子的java代码实现 测试数据 java代码 package com.hzf.spark.study; import java.util.Ha ...
- spark算子之DataFrame和DataSet
前言 传统的RDD相对于mapreduce和storm提供了丰富强大的算子.在spark慢慢步入DataFrame到DataSet的今天,在算子的类型基本不变的情况下,这两个数据集提供了更为强大的的功 ...
随机推荐
- IIS Web服务器日志、日志服务器分析
IIS Web服务器日志.日志服务器分析 EventLog Analyzer是一款全面的工具,用于审计.管理和跟踪您的Microsoft Internet Information Services(I ...
- 初识kbmmw 中的ORM
在kbmmw 5.02.1 中,加入了ORM 的功能(这里可能和其他语言的定义不完全一样),我们就简单的认为 它就是一个类与数据库的转换吧.今天就先介绍一下如何通过kbmmw 的ORM 功能,实现类与 ...
- Python10/23--继承/派生
(继承)1. 什么是继承? 在程序中继承是一种新建子类的方式,新创建的类称之为子类\派生类,被继承的类称之为父类\基类\超类 继承描述的是一种遗传关系,子类可以重用父类的属性 2. 为何用继承? 减少 ...
- RabbitMQ c#版实现(转)
出处:https://www.cnblogs.com/hanfan/p/9842301.html 网上很多人已经总结的很好了,比如今天看到的这个.https://www.cnblogs.com/Lip ...
- Win7命令行编译cuda及设置Windows显卡响应时间
在开始菜单中找到Visual Studio 2013 >> Visual Studio Tools 选择86或64版本的VC命令提示符环境,我用的 VS2013 x86 Native To ...
- 安装SourceTree遇到的一个个坑
之前在公司的电脑上满心欢喜的安装了下,很顺利就成功了,回来在自己电脑上安装,结果坑不能停,以此来纪念下吧! 下载完成后,进行安装: 这里我是申请了个账户,选第一个user an existing ac ...
- 第04章:MongoDB基本概念
① 数据库 MongoDB的一个实例可以拥有一个或多个相互独立的数据库,每个数据库都有自己的集合 集合 集合可以看作是拥有动态模式的表 文档 文档是MongoDB中基本的数据单元,类似于RDB ...
- Gym 100096D Guessing game
Gym 100096D Guessing game 题面 Problem Description Byteman is playing a following game with Bitman. Bi ...
- 自己写一个chrome扩展程序 - 右键菜单扩展
最近在学习Spring,心想dotnet如何实现类似形式呢.于是想认真学习Casetle组件,发现没有书籍!而spring的书多得很.于是只好找网上教程了.发现系统的文章不多.Terrylee好多文章 ...
- _编程语言_C_C++_数据结构_struct
Struct 语句,访问成员使用 点结构. Example: #include <iostream> #include <cstring> using namespace st ...