在spark中,reduceByKey、groupByKey和combineByKey这三种算子用的较多,结合使用过程中的体会简单总结:

  我的代码实践:https://github.com/wwcom614/Spark

•reduceByKey

  用于对每个key对应的多个value进行merge操作,最重要的是它能够在本地先进行merge操作,并且merge操作可以通过函数自定义;

•groupByKey

  也是对每个key进行操作,但只生成一个sequence,groupByKey本身不能自定义函数,需要先用groupByKey生成RDD,然后才能对此RDD通过map进行自定义函数操作。

使用groupByKey时,spark会将所有的键值对进行移动,不会进行局部merge,会导致集群节点之间的开销很大,导致传输延时。

•combineByKey

一个相对底层的基于键进行聚合的基础方法(因为大多数基于键聚合的方法,例如reduceByKey,groupByKey都是用它实现的),所以感觉这个方法还是挺重要的。

该方法的入参主要为前三个:

  • createCombiner:遍历一个分区中每个元素,如果不存在,createCombiner创建累加器C,把原变量V放入,对相同K,把V合并成一个集合,例如将(key,88),映射建立集合(key,(88,1))
  • mergeValue:遍历一个分区中每个元素,如果已存在,将相同的值累加,例如将(key,(88,1)),(key,(88,1)),mergeValue累加集合为(key,(88,2))
  • mergeCombiners:createCombiner  和  mergeValue 是处理单个分区中数据,  mergeCombiners是每个分区处理完了,多个分区合并数据使用,例如分区1累加集合值为(key,(88,2)),分区2累加集合值为(key,(88,3)),mergeCombiners累加集合为(key,(88,5))

写个求每个学生的平均成绩的例子

    //2个学生及他们的成绩
val scoreList = Array(("ww1", 88), ("ww1", 95), ("ww2", 91), ("ww2", 93), ("ww2", 95), ("ww2", 98)) //将2个学生成绩转为RDD,分2个partition存储
val scoreRDD: RDD[(String, Int)] = sc.parallelize(scoreList, 2)
println("【scoreRDD.partitions.size】:" + scoreRDD.partitions.size)
//分区数,【scoreRDD.partitions.size】:2
println("【scoreRDD.glom.collect】:" + scoreRDD.glom().collect().mkString(",")) //每个分区的内容 //使用combineByKey,按每个学生累积分数和科目数量
val rddCombineByKey: RDD[(String, (Int, Int))] = scoreRDD.combineByKey(v => (v, 1),
(param1: (Int, Int), v) => (param1._1 + v, param1._2 + 1),
(p1: (Int, Int), p2: (Int, Int)) => (p1._1 + p2._1, p1._2 + p2._2))
println("【combineByKey】:" + rddCombineByKey.collect().mkString(","))
//【combineByKey】:(ww2,(377,4)),(ww1,(183,2)) //在map中使用case是scala的用法,按每个学生总成绩/科目数量,得到平均分
val avgScore = rddCombineByKey.map { case (key, value) => (key, value._1 / value._2.toDouble) }
println("【avgScore】:" + avgScore.collect().mkString(","))
//【avgScore】:(ww2,94.25),(ww1,91.5)

说明:

1.首先:各个分区createCombiner 和 mergeValue先干活

  第一个分区遍历开始: 数据为

Array(("ww1", 88), ("ww1", 95), ("ww2", 91))

    --> 处理(ww1,88), 因为是第一次遇到键“ww1”, 所以调用createCombiner方法 (v)=> (v,1) , 这里就是(ww1,88) =>( ww1, (88,1))

    --> 处理(ww1,95),不是第一次遇到键“ww1”,所以会调用mergeValue方法(param1:(Int,Int),v)=>(param1._1+v,param1._2+1),这里就是(ww1,(88,1)),(ww1,95)=>(ww1,(88+95, 1+1))= (ww1,(183,2))  ---(成绩相加,科目数量+1)

    --> 处理(ww2,91),因为是第一次遇到键“ww2”, 所以调用createCombiner方法 (v)=> (v,1) ,这里就是(ww2,91) => (ww2, (91,1))

    第一个分区遍历结束:返回 (ww1,(183,2) ),  ( ww2,(91,1))

  第二个分区遍历开始: 数据为

Array(("ww2", 93), ("ww2", 95), ("ww2", 98))

   --> 处理(ww2,93), 因为是第一次遇到键“ww2”, 所以调用createCombiner方法 (v)=> (v,1) ,这里就是(ww2,93 )=>(ww2, (93,1))

   --> 处理(ww2,95),不是第一次遇到键“ww2”,所以会调用mergeValue方法(param1:(Int,Int),v)=>(param1._1+v,param1._2+1),这里就是(ww2,(93,1)),(ww2,95)=>(ww2,(93+95, 1+1))= (ww2,(188,2))  ---(成绩相加,科目数量+1)

   --> 处理(ww2,98),不是第一次遇到键“ww2”,所以会调用mergeValue方法(param1:(Int,Int),v)=>(param1._1+v,param1._2+1),这里就是(ww2,(188,2)),(ww2,98)=>(ww2,(188+98, 2+1))= (ww2,(286,3) ) ---(成绩相加,科目数量+1)

    第二个分区遍历结束:返回 (ww2,(286,3) )

2.然后:各个分区干完了, mergeCombiners方法汇总处理

    --> 处理分区1的ww1,(183,2)   ww2,(91,1) ,分区2的ww2,(286,3) ,  会调用mergeCombiners方法(p1: (Int, Int), p2: (Int, Int)) => (p1._1 + p2._1, p1._2 + p2._2)),这里就是

(    (ww1,(183,2)),(ww2,(91,1)) ,  (ww2,(286,3))  )=>  (  (ww1,(183,2)) ,   (ww2,(91+286,1+3)) ) =   (  (ww1,(183,2)) ,   (ww2,(377,4)) )

【Spark算子】:reduceByKey、groupByKey和combineByKey的更多相关文章

  1. Spark算子--reduceByKey

    reduceByKey--Transformation类算子 代码示例 result  

  2. (转)Spark 算子系列文章

    http://lxw1234.com/archives/2015/07/363.htm Spark算子:RDD基本转换操作(1)–map.flagMap.distinct Spark算子:RDD创建操 ...

  3. Spark算子总结及案例

    spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key-Value数据类型的Tran ...

  4. Spark算子总结(带案例)

    Spark算子总结(带案例) spark算子大致上可分三大类算子: 1.Value数据类型的Transformation算子,这种变换不触发提交作业,针对处理的数据项是Value型的数据. 2.Key ...

  5. Spark算子使用

    一.spark的算子分类 转换算子和行动算子 转换算子:在使用的时候,spark是不会真正执行,直到需要行动算子之后才会执行.在spark中每一个算子在计算之后就会产生一个新的RDD. 二.在编写sp ...

  6. Spark:常用transformation及action,spark算子详解

    常用transformation及action介绍,spark算子详解 一.常用transformation介绍 1.1 transformation操作实例 二.常用action介绍 2.1 act ...

  7. UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现

      UserView--第二种方式(避免第一种方式Set饱和),基于Spark算子的java代码实现   测试数据 java代码 package com.hzf.spark.study; import ...

  8. UserView--第一种方式set去重,基于Spark算子的java代码实现

    UserView--第一种方式set去重,基于Spark算子的java代码实现 测试数据 java代码 package com.hzf.spark.study; import java.util.Ha ...

  9. spark算子之DataFrame和DataSet

    前言 传统的RDD相对于mapreduce和storm提供了丰富强大的算子.在spark慢慢步入DataFrame到DataSet的今天,在算子的类型基本不变的情况下,这两个数据集提供了更为强大的的功 ...

随机推荐

  1. hadoop报错:java.io.IOException(java.net.ConnectException: Call From xxx/xxx to xxx:10020 failed on connection exception: java.net.ConnectException: 拒绝连接

    任务一直报错 现象比较奇怪,部分任务可以正常跑,部分问题报错 报错信息如下: Ended Job = job_1527476268558_132947 with exception 'java.io. ...

  2. 819. Most Common Word

    static int wing=[]() { std::ios::sync_with_stdio(false); cin.tie(NULL); ; }(); class Solution { publ ...

  3. 2019.01.02 poj3046 Ant Counting(生成函数+dp)

    传送门 生成函数基础题. 题意:给出nnn个数以及它们的数量,求从所有数中选出i∣i∈[L,R]i|i\in[L,R]i∣i∈[L,R]个数来可能组成的集合的数量. 直接构造生成函数然后乘起来f(x) ...

  4. 2018.11.01 NOIP训练 树的排列(树形dp)

    传送门 跟这道题差不多. 只不过是让权值小的儿子做权值大的儿子的父亲而已. 代码

  5. 2018.10.27 loj#2292. 「THUSC 2016」成绩单(区间dp)

    传送门 g[i][j][k][l]g[i][j][k][l]g[i][j][k][l]表示将区间l,rl,rl,r变成最小值等于kkk,最大值等于lll时的花费的最优值. f[i][j]f[i][j] ...

  6. Bootstrap Table 超多列 使用滚动条

    overflow-x: scroll;横向滑动详细讲解 able显示滚动条,要先把table放到一个div中,控制div 属性overflow值为scroll <div style=" ...

  7. textInput事件

    DOM3级事件引入了 textInput 这个代替keypress的textInput的行为稍有不同 区别 只要可以获得焦点的元素都有keypress事件,但是textInput事件只有文本编辑区域才 ...

  8. day21(Listener监听器)

    监听器只要分为监听web对象创建与销毁,监听属性变化,感知监听器. 1.监听web对象的创建与销毁 servletContextListener   监听ServletContext对象的创建和销毁 ...

  9. Reorder the Books -- hdu -- 5500

    http://acm.hdu.edu.cn/showproblem.php?pid=5500 Reorder the Books Time Limit: 4000/2000 MS (Java/Othe ...

  10. 02:OC和C对比

    1.源文件对比 C语言中常见源文件.h头文件,.c文件 文件扩展名 源类型 .h 头文件,用于存放函数声明 .c C语言源文件,用于实现头文件中声明的方法 OC中的源文件.h头文件,.m与.mm的实现 ...