Poj2296
题意:给定n个点,然后在每个点在一个正方形的上边或者下边的中点,并且所有的正方形等大且不能重叠。求正方形最大的边长是多少。
思路:很明显的二分边长+判定。不过判定要用到2-sat,算是2-sat的入门题吧。
所谓的2-sat,就是对于若干个bool不等式,然后对于会互相干扰(即不能同时成立的),连边处理,然后对于每一块枚举一个点的值,判断是否可行。出现冲突即无解。具体看代码吧。
下面2-sat部分是LRJ的模板,写的挺清晰的。。
/*
* Author: Yzcstc
* Created Time: 2014/3/8 13:40:50
* File Name: Poj2296.cpp
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<string>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<stack>
#include<ctime>
#define M0(x) memset(x, 0, sizeof(x))
#define rep(i, a, b) for (int i = (a); i <= (b); ++i)
#define red(i, a, b) for (int i = (a); i >= (b); --i)
#define PB push_back
#define Inf 0x3fffffff
#define eps 1e-8
#define maxn 500
typedef long long LL;
using namespace std;
struct TwoSat{
int n;
vector<int> G[maxn * ];
bool mark[maxn * ];
int S[maxn * ], c;
bool dfs(int x){ // 搜索一组解
if (mark[x^]) return false; //出现冲突
if (mark[x]) return true;
mark[x] = true;
S[c++] = x;
for (int i = ; i < G[x].size(); ++i)
if (!dfs(G[x][i])) return false;
return true;
} void init(int n){
this->n = n;
for (int i = ; i < * n; ++i)
G[i].clear();
memset(mark, , sizeof(mark));
} void add_clause(int x, int xv, int y, int yv){
x = x * + xv;
y = y * + yv; //x,y不能同时存在,那么如果选了y,合法解必定要选x^1
G[x^].push_back(y);
G[y^].push_back(x);
} bool solve(){
for (int i = ; i < n * ; i += )
if (!mark[i] && !mark[i+]){
c = ;
if (!dfs(i)){ //枚举2种取值都无解
while (c > ) mark[S[--c]] = false;
if (!dfs(i+)) return false;
}
}
return true;
}
} Sat; int n, X[], Y[], T; void init(){
scanf("%d", &n);
for (int i = ; i < n; ++i)
scanf("%d%d", &X[i], &Y[i]);
} bool check(int r){
Sat.init(n);
for (int i = ; i < n; ++i)
for (int j = i + ; j < n; ++j) if (i != j){ //分类讨论冲突情况
if (Y[i] < Y[j]){
if (Y[j] - Y[i] < r && abs(X[i] - X[j]) < r) Sat.add_clause(i, , j, );
if (Y[j] - Y[i] < * r && abs(X[i] - X[j]) < r) Sat.add_clause(i, , j, );
if (Y[j] - Y[i] < r && abs(X[i] - X[j]) < r) Sat.add_clause(i, , j, );
}
if (Y[i] > Y[j]){
if (Y[i] - Y[j] < r && abs(X[i] - X[j]) < r) Sat.add_clause(i, , j, );
if (Y[i] - Y[j] < * r && abs(X[i] - X[j]) < r) Sat.add_clause(i, , j, );
if (Y[i] - Y[j] < r && abs(X[i] - X[j]) < r) Sat.add_clause(i, , j, );
}
if (Y[i] == Y[j]){
if (abs(X[i] - X[j]) < r) Sat.add_clause(i, , j, );
if (abs(X[i] - X[j]) < r) Sat.add_clause(i, , j, );
}
}
return Sat.solve();
} void solve(){
int l = , r = , mid;
int cnt = , ans = ;
while (l <= r){ //二分答案
mid = (l + r) >> ;
if (check(mid)) { ans = mid, l = mid + ;}
else r = mid - ;
}
printf("%d\n",ans);
} int main(){
freopen("a.in", "r", stdin);
freopen("a.out", "w", stdout);
scanf("%d", &T);
while (T--){
init();
solve();
}
fclose(stdin); fclose(stdout);
return ;
}
Poj2296的更多相关文章
- POJ-2296 Map Labeler 2sat
题目链接:http://poj.org/problem?id=2296 二分+2sat,每个点的上下两个方向为2sat的两个状态. //STATUS:C++_AC_16MS_536KB #includ ...
- POJ2296二分2sat
题意: 给n个点,每个点必须在一个正方形上,可以在正方向上面边的中点或者是下面边的中点,正方形是和x,y轴平行的,而且所有的点的正方形的边长一样,并且正方形不能相互重叠(边相邻可以),问满 ...
- OJ题目分类
POJ题目分类 | POJ题目分类 | HDU题目分类 | ZOJ题目分类 | SOJ题目分类 | HOJ题目分类 | FOJ题目分类 | 模拟题: POJ1006 POJ1008 POJ1013 P ...
- POJ 2296 Map Labeler / ZOJ 2493 Map Labeler / HIT 2369 Map Labeler / UVAlive 2973 Map Labeler(2-sat 二分)
POJ 2296 Map Labeler / ZOJ 2493 Map Labeler / HIT 2369 Map Labeler / UVAlive 2973 Map Labeler(2-sat ...
- 关于2-sat的建图方法及解决方案
转载增减: https://blog.csdn.net/qq_24451605/article/details/47126143 https://blog.csdn.net/u012915516/ar ...
- 2-Sat小结
关于2-sat,其实就是一些对于每个问题只有两种解,一般会给出问题间的关系,比如and,or,not等关系,判定是否存在解的问题.. 具体看http://blog.csdn.net/jarjingx/ ...
- 专题训练之2-sat
推荐几篇博客:https://blog.csdn.net/JarjingX/article/details/8521690 研究总结2-sat问题 https://blog.csdn.net/wher ...
随机推荐
- Java VisualVM 插件地址
打开Java VisualVM检查更新插件时,默认的连接连不上,通过浏览器访问之后发现默认的服务器已经404,新地址已经迁移到github,下面这个地址里面有不同版本jdk对应的插件中心地址. htt ...
- 在开发node.js中,关于使用VS2013插件出现一直读取资源的问题
情况描述: 1.安装了VS2013: 2.安装了VS开发node.js的插件; 3.打开以前的工程文件,有的可以打开,有的打不开.而且打不开的始终停留在读取资源的界面.很痛苦的.等半天都没有反应.到底 ...
- Luogu 2822[NOIP2016] 组合数问题 - 数论
题解 乱搞就能过了. 首先我们考虑如何快速判断C(i, j ) | k 是否成立. 由于$k$非常小, 所以可以对$k$分解质因数, 接着预处理出前N个数的阶乘的因数中 $p_i$ 的个数, 然后就可 ...
- 用VS2010打开VS2012项目
1.修改解决方案文件,即.sln文件: 用记事本打开.sln文件,把其中的 Microsoft Visual Studio Solution File, Format Version 12.00 # ...
- 20岁的设计师vs30岁的设计师
20岁的设计师vs30岁的设计师 如果你还是20来岁,要恭喜你,你还年轻, 一切才刚刚开始 还有时间去探索无尽的可能 还有时间去找到无限的前途 如果30岁的你还不够强大, 请记得时刻给予自己信心, ...
- mysql 5.7.10 下互为主备配置
mysql安装方法这里就不在介绍,网上有很多教程 环境介绍: A主机: win2008_x64+mysql5.7.10 64位,ip192.168.7.180 B主机: win2008_x64+mys ...
- IOS初级:SDWebImage
简单用法 #import "ViewController.h" #import "SDWebImage/UIImageView+WebCache.h" @int ...
- 买铅笔(NOIP2016)
先给题目链接:买铅笔 这题非常水,没啥可分析的,先给代码: #include<bits/stdc++.h> //1 using namespace std; int main(){ int ...
- Python如何利用Xpath进行解析
用Python做网络爬虫的时候,会对网页的信息进行提取,笔者接触的有正则表达式,BeautifulSoup,Xpath,前面两个都是在国内能够使用的,而Xpath是Chrome的一个插件,因此需要“F ...
- Jetty 9的使用
参考来源:https://www.cnblogs.com/empireghost/p/3522834.html