deeplearning 源码收集
- Theano – CPU/GPU symbolic expression compiler in python (from MILA lab at University of Montreal)
- Torch – provides a Matlab-like environment for state-of-the-art machine learning algorithms in lua (from Ronan Collobert, Clement Farabet and Koray Kavukcuoglu)
- Pylearn2 - Pylearn2 is a library designed to make machine learning research easy.
- Blocks- A Theano framework for training neural networks
- Tensorflow - TensorFlow™ is an open source software library for numerical computation using data flow graphs.
- MXNet - MXNet is a deep learning framework designed for both efficiency and flexibility.
- Caffe -Caffe is a deep learning framework made with expression, speed, and modularity in mind.Caffe is a deep learning framework made with expression, speed, and modularity in mind.
- Lasagne- Lasagne is a lightweight library to build and train neural networks in Theano.
- Keras- A theano based deep learning library.
- Deep Learning Tutorials – examples of how to do Deep Learning with Theano (from LISA lab at University of Montreal)
- DeepLearnToolbox – A Matlab toolbox for Deep Learning (from Rasmus Berg Palm)
- Cuda-Convnet – A fast C++/CUDA implementation of convolutional (or more generally, feed-forward) neural networks. It can model arbitrary layer connectivity and network depth. Any directed acyclic graph of layers will do. Training is done using the back-propagation algorithm.
- Deep Belief Networks. Matlab code for learning Deep Belief Networks (from Ruslan Salakhutdinov).
- RNNLM- Tomas Mikolov’s Recurrent Neural Network based Language models Toolkit.
- RNNLIB-RNNLIB is a recurrent neural network library for sequence learning problems. Applicable to most types of spatiotemporal data, it has proven particularly effective for speech and handwriting recognition.
- matrbm. Simplified version of Ruslan Salakhutdinov’s code, by Andrej Karpathy (Matlab).
- deeplearning4j- Deeplearning4J is an Apache 2.0-licensed, open-source, distributed neural net library written in Java and Scala.
- Estimating Partition Functions of RBM’s. Matlab code for estimating partition functions of Restricted Boltzmann Machines using Annealed Importance Sampling (from Ruslan Salakhutdinov).
- Learning Deep Boltzmann MachinesMatlab code for training and fine-tuning Deep Boltzmann Machines (from Ruslan Salakhutdinov).
- The LUSH programming language and development environment, which is used @ NYU for deep convolutional networks
- Eblearn.lsh is a LUSH-based machine learning library for doing Energy-Based Learning. It includes code for “Predictive Sparse Decomposition” and other sparse auto-encoder methods for unsupervised learning. Koray Kavukcuoglu provides Eblearn code for several deep learning papers on this page.
- deepmat- Deepmat, Matlab based deep learning algorithms.
- MShadow - MShadow is a lightweight CPU/GPU Matrix/Tensor Template Library in C++/CUDA. The goal of mshadow is to support efficient, device invariant and simple tensor library for machine learning project that aims for both simplicity and performance. Supports CPU/GPU/Multi-GPU and distributed system.
- CXXNET - CXXNET is fast, concise, distributed deep learning framework based on MShadow. It is a lightweight and easy extensible C++/CUDA neural network toolkit with friendly Python/Matlab interface for training and prediction.
- Nengo-Nengo is a graphical and scripting based software package for simulating large-scale neural systems.
- Eblearn is a C++ machine learning library with a BSD license for energy-based learning, convolutional networks, vision/recognition applications, etc. EBLearn is primarily maintained by Pierre Sermanet at NYU.
- cudamat is a GPU-based matrix library for Python. Example code for training Neural Networks and Restricted Boltzmann Machines is included.
- Gnumpy is a Python module that interfaces in a way almost identical to numpy, but does its computations on your computer’s GPU. It runs on top of cudamat.
- The CUV Library (github link) is a C++ framework with python bindings for easy use of Nvidia CUDA functions on matrices. It contains an RBM implementation, as well as annealed importance sampling code and code to calculate the partition function exactly (from AIS labat University of Bonn).
- 3-way factored RBM and mcRBM is python code calling CUDAMat to train models of natural images (from Marc’Aurelio Ranzato).
- Matlab code for training conditional RBMs/DBNs and factored conditional RBMs (from Graham Taylor).
- mPoT is python code using CUDAMat and gnumpy to train models of natural images (from Marc’Aurelio Ranzato).
- neuralnetworks is a java based gpu library for deep learning algorithms.
- ConvNet is a matlab based convolutional neural network toolbox.
Theano
http://deeplearning.net/software/theano/
code from: http://deeplearning.net/
Deep Learning Tutorial notes and code
https://github.com/lisa-lab/DeepLearningTutorials
code from: lisa-lab
A Matlab toolbox for Deep Learning
https://github.com/rasmusbergpalm/DeepLearnToolbox
code from: RasmusBerg Palm
deepmat
Matlab Code for Restricted/Deep BoltzmannMachines and Autoencoder
https://github.com/kyunghyuncho/deepmat
code from: KyungHyun Cho http://users.ics.aalto.fi/kcho/
Training a deep autoencoder or a classifieron MNIST digits
http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html
code from: Ruslan Salakhutdinov and GeoffHinton
CNN - Convolutional neural network class
http://www.mathworks.cn/matlabcentral/fileexchange/24291
Code from: matlab
Neural Network for Recognition ofHandwritten Digits (CNN)
http://www.codeproject.com/Articles/16650/Neural-Network-for-Recognition-of-Handwritten-Digi
cuda-convnet
A fast C++/CUDA implementation ofconvolutional neural networks
http://code.google.com/p/cuda-convnet/
matrbm
a small library that can train RestrictedBoltzmann Machines, and also Deep Belief Networks of stacked RBM's.
http://code.google.com/p/matrbm/
code from: Andrej Karpathy
Exercise from UFLDL Tutorial:
http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial
and tornadomeet’s bolg: http://www.cnblogs.com/tornadomeet/tag/Deep%20Learning/
and https://github.com/dkyang/UFLDL-Tutorial-Exercise
Conditional Restricted Boltzmann Machines
http://www.cs.nyu.edu/~gwtaylor/publications/nips2006mhmublv/code.html
from Graham Taylor http://www.cs.nyu.edu/~gwtaylor/
Factored Conditional Restricted BoltzmannMachines
http://www.cs.nyu.edu/~gwtaylor/publications/icml2009/code/index.html
from Graham Taylor http://www.cs.nyu.edu/~gwtaylor/
Marginalized Stacked Denoising Autoencodersfor Domain Adaptation
http://www1.cse.wustl.edu/~mchen/code/mSDA.tar
code from: http://www.cse.wustl.edu/~kilian/code/code.html
Tiled Convolutional Neural Networks
http://cs.stanford.edu/~quocle/TCNNweb/pretraining.tar.gz
http://cs.stanford.edu/~pangwei/projects.html
tiny-cnn:
A C++11 implementation of convolutionalneural networks
https://github.com/nyanp/tiny-cnn
myCNN
https://github.com/aurofable/18551_Project/tree/master/server/2009-09-30-14-33-myCNN-0.07
Adaptive Deconvolutional Network Toolbox
http://www.matthewzeiler.com/software/DeconvNetToolbox2/DeconvNetToolbox.zip
Deep Learning手写字符识别C++代码
http://download.csdn.net/detail/lucky_greenegg/5413211
from: http://blog.csdn.net/lucky_greenegg/article/details/8949578
convolutionalRBM.m
A MATLAB / MEX / CUDA-MEX implementation ofConvolutional Restricted Boltzmann Machines.
https://github.com/qipeng/convolutionalRBM.m
from: http://qipeng.me/software/convolutional-rbm.html
rbm-mnist
C++ 11 implementation of Geoff Hinton'sDeep Learning matlab code
https://github.com/jdeng/rbm-mnist
Learning Deep Boltzmann Machines
http://web.mit.edu/~rsalakhu/www/code_DBM/code_DBM.tar
http://web.mit.edu/~rsalakhu/www/DBM.html
Code provided by Ruslan Salakhutdinov
Efficient sparse coding algorithms
http://web.eecs.umich.edu/~honglak/softwares/fast_sc.tgz
http://web.eecs.umich.edu/~honglak/softwares/nips06-sparsecoding.htm
Linear Spatial Pyramid Matching UsingSparse Coding for Image Classification
http://www.ifp.illinois.edu/~jyang29/codes/CVPR09-ScSPM.rar
http://www.ifp.illinois.edu/~jyang29/ScSPM.htm
SPAMS
(SPArse Modeling Software) is anoptimization toolbox for solving various sparse estimation problems.
http://spams-devel.gforge.inria.fr/
sparsenet
Sparse coding simulation software
http://redwood.berkeley.edu/bruno/sparsenet/
fast dropout training
https://github.com/sidaw/fastdropout
http://nlp.stanford.edu/~sidaw/home/start
Deep Learning of Invariant Features viaSimulated Fixations in Video
http://ai.stanford.edu/~wzou/deepslow_release.tar.gz
Sparse filtering
http://cs.stanford.edu/~jngiam/papers/NgiamKohChenBhaskarNg2011_Supplementary.pdf
k-means
http://www.stanford.edu/~acoates/papers/kmeans_demo.tgz
others:
http://deeplearning.net/software_links/
deeplearning 源码收集的更多相关文章
- 【Android源代码下载】收集整理android界面UI效果源码
在Android开发中,Android界面UI效果设计一直都是很多童鞋关注的问题,今天给大家分享下大神收集整理的多个android界面UI效果,都是源码,都是干货,贡献给各位网友! 话不多说,直接上效 ...
- 原生JS研究:学习jquery源码,收集整理常用JS函数
原生JS研究:学习jquery源码,收集整理常用JS函数: 1. JS获取原生class(getElementsByClass) 转自:http://blog.csdn.net/kongjiea/ar ...
- 简单理解 OAuth 2.0 及资料收集,IdentityServer4 部分源码解析
简单理解 OAuth 2.0 及资料收集,IdentityServer4 部分源码解析 虽然经常用 OAuth 2.0,但是原理却不曾了解,印象里觉得很简单,请求跳来跳去,今天看完相关介绍,就来捋一捋 ...
- nGrinder对监控机器收集自定义数据及源码分析
转载:https://blog.csdn.net/neven7/article/details/50782451 0.背景 性能测试工具nGrinder支持在无需修改源码的情况下,对目标服务器收集自定 ...
- java8学习之Collector源码分析与收集器核心
之前已经对流在使用上已经进行了大量应用了,也就是说对于它的应用是比较熟悉了,但是比较欠缺的是对于它底层的实现还不太了解,所以接下来准备大量通过阅读官方的javadoc反过来加深对咱们已经掌握这些知识更 ...
- 2020了你还不会Java8新特性?(五)收集器比较器用法详解及源码剖析
收集器用法详解与多级分组和分区 为什么在collectors类中定义一个静态内部类? static class CollectorImpl<T, A, R> implements Coll ...
- webpack源码-依赖收集
webpack源码-依赖收集 version:3.12.0 程序主要流程: 触发make钩子 Compilation.js 执行EntryOptionPlugin 中注册的make钩子 执行compi ...
- 【Vue源码学习】依赖收集
前面我们学习了vue的响应式原理,我们知道了vue2底层是通过Object.defineProperty来实现数据响应式的,但是单有这个还不够,我们在data中定义的数据可能没有用于模版渲染,修改这些 ...
- jQuery源码分析学习--资料收集--更新中
1.逐行分析jQuery源码的奥秘 - 网易云课堂 http://study.163.com/course/courseMain.htm?courseId=465001#/courseDetail? ...
随机推荐
- 设计师们做UI设计和交互设计、界面设计等一般会去什么网站呢?
明明可靠颜值吃饭,却偏偏要靠才华立身,UI设计师就是这样一群神奇的物种.面对“大的同时小一点”.“五彩斑斓黑”.“下班之前给我”……这些甲方大大刁钻的需求,设计师每天都在咬牙微笑讨生活.你可以批评我的 ...
- Linux 开启定时计划任务
1.crontab 编辑“crontab -e # m h dom mon dow command30 18 * * * lynx -dump http://admin.koala.xxx 30 18 ...
- 【SpringAop】【统一日志处理】注解方式理解以及使用
[注意:本次代码的demo会存在百度网盘,由于公司的保密,禁止上传,所以仅本人可见] 目前公司在做数据资产项目,数据质量部分使用到了springaop做统一日志处理,以前对这块有了解,有点模糊不清,今 ...
- 那些年,UI设计师还在手工标注和切图时走的弯路
在我从事UI设计师这几年的工作中逐渐发现,最让人糟心的不是应付各种奇葩的需求,完成设计稿,而是交付.每次交付的设计稿和最后开发出来的产品总是让我心塞无比,很少最终产品和我的设计稿是完全一致的. UI设 ...
- cpp 区块链模拟示例(七) 补充 Merkle树
Merkle 树 完整的比特币数据库(也就是区块链)需要超过 140 Gb 的磁盘空间.因为比特币的去中心化特性,网络中的每个节点必须是独立,自给自足的,也就是每个节点必须存储一个区块链的完整副本.随 ...
- 用visual studio 2017来调试python
https://www.visualstudio.com/zh-hans/thank-you-downloading-visual-studio/?sku=Professional&rel=1 ...
- .net利用NPOI生成excel文件
整理代码,这个是生成excel文件,用的是HSSF的方式,只能生成65535行,256列的数据,如果要看office07之后的生成,之前的随笔里提过.这个是一个完整的过程. 首先是已经查找好的数据,这 ...
- 利用PHPExcel读取excel文件
$filePath = "7788.xls"; $PHPExcel = new PHPExcel(); $PHPReader = new PHPExcel_Reader_Excel ...
- ios label的一些设置
一.根据文本长度设置label的宽高和字体大小 NSString *str = @"天将降大任于斯人也,必先苦其心志.天将降大任于斯人也,必先苦其心志."; CGRect ...
- 蓝绿部署、红黑部署、AB测试、灰度发布、金丝雀发布、滚动发布的概念与区别(转)
出处:https://www.baidu.com/link?url=QjboallwNm_jxcL3fHG57wEakiBfAs_3-TChTGu1eBXstlHEsGBc-NDA7AKTqsiroB ...