A * B Problem Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 22082    Accepted Submission(s): 5511

Problem Description

Calculate A * B.
 

Input

Each line will contain two integers A and B. Process to end of file.

Note: the length of each integer will not exceed 50000.

 

Output

For each case, output A * B in one line.
 

Sample Input

1
2
1000
2
 

Sample Output

2
2000
 

Author

DOOM III
 
 //2017-09-07
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <complex>
#include <cmath>
#define Complex complex<double> using namespace std; const double PI = acos(-1.0);
const int N = ; void fft(Complex y[], int n, int op){
for(int i = , j = n/; i < n-; i++){
if(i<j)swap(y[i], y[j]);
int k = n/;
while(j >= k){
j -= k;
k /= ;
}
if(j<k)j += k;
}
for(int h = ; h <= n; h <<= ){
Complex wn(cos(-op**PI/h), sin(-op**PI/h));
for(int j = ; j < n; j += h){
Complex w(, );
for(int k = j; k < j+h/; k++){
Complex u = y[k];
Complex t = w*y[k+h/];
y[k] = u+t;
y[k+h/] = u-t;
w = w*wn;
}
}
}
} char a[N], b[N];
Complex A[N<<], B[N<<];
int ans[N<<];
void poly_muilt(){
int n = , len1 = strlen(a), len2 = strlen(b);
while(n<len1* || n<len2*)n<<=;
for(int i = ; i < len1; i++)A[i] = a[len1-i-]-'';
for(int i = len1; i < n; i++)A[i] = ;
for(int i = ; i < len2; i++)B[i] = b[len2-i-]-'';
for(int i = len2; i < n; i++)B[i] = ;
fft(A, n, );
fft(B, n, );
for(int i = ; i < n; i++)
A[i] *= B[i];
fft(A, n, -);
for(int i = ; i < n; i++)
ans[i] = (int)(A[i].real()/n+0.5);
for(int i = ; i < n; i++){
ans[i+] += ans[i]/;
ans[i] %= ;
}
n = len1+len2-;
while(ans[n] <= && n > )n--;
for(int i = n; i >= ; i--)
printf("%c", ans[i]+'');
printf("\n");
} int main()
{
while(scanf("%s%s", a, b) != EOF){
poly_muilt();
} return ;
}

HDU1402(fft)的更多相关文章

  1. 快速傅里叶(FFT)的快速深度思考

    关于按时间抽取快速傅里叶(FFT)的快速理论深度思考 对于FFT基本理论参考维基百科或百度百科. 首先谈谈FFT的快速何来?大家都知道FFT是对DFT的改进变换而来,那么它究竟怎样改进,它改进的思想在 ...

  2. 【BZOJ3527】力(FFT)

    [BZOJ3527]力(FFT) 题面 Description 给出n个数qi,给出Fj的定义如下: \[Fj=\sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{ ...

  3. 【BZOJ4827】【HNOI2017】礼物(FFT)

    [BZOJ4827][HNOI2017]礼物(FFT) 题面 Description 我的室友最近喜欢上了一个可爱的小女生.马上就要到她的生日了,他决定买一对情侣手 环,一个留给自己,一 个送给她.每 ...

  4. FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)

    前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...

  5. 【BZOJ4503】两个串(FFT)

    [BZOJ4503]两个串(FFT) 题面 给定串\(S\),以及带通配符的串\(T\),询问\(T\)在\(S\)中出现了几次.并且输出对应的位置. \(|S|,|T|<=10^5\),字符集 ...

  6. 【BZOJ4259】残缺的字符串(FFT)

    [BZOJ4259]残缺的字符串(FFT) 题面 给定两个字符串\(|S|,|T|\),两个字符串中都带有通配符. 回答\(T\)在\(S\)中出现的次数. \(|T|,|S|<=300000\ ...

  7. 【51Nod1258】序列求和V4(FFT)

    [51Nod1258]序列求和V4(FFT) 题面 51Nod 多组数据,求: \[Ans=\sum_{i=1}^ni^k,n\le 10^{18},k\le50000\] 题解 预处理伯努利数,时间 ...

  8. 【CF528D】Fuzzy Search(FFT)

    [CF528D]Fuzzy Search(FFT) 题面 给定两个只含有\(A,T,G,C\)的\(DNA\)序列 定义一个字符\(c\)可以被匹配为:它对齐的字符,在距离\(K\)以内,存在一个字符 ...

  9. 【CF954I】Yet Another String Matching Problem(FFT)

    [CF954I]Yet Another String Matching Problem(FFT) 题面 给定两个字符串\(S,T\) 求\(S\)所有长度为\(|T|\)的子串与\(T\)的距离 两个 ...

随机推荐

  1. Mysql数据引擎和系统库

    系统数据库 information_schema: 虚拟库,不占用磁盘空间,存储的是数据库启动后的一些参数,如用户表信息.列信息.权限信息.字符信息等performance_schema: MySQL ...

  2. [LeetCode] 两数相加

    给定两个非空链表来表示两个非负整数.位数按照逆序方式存储,它们的每个节点只存储单个数字.将两数相加返回一个新的链表. 你可以假设除了数字 0 之外,这两个数字都不会以零开头. 示例: 输入:(2 -& ...

  3. 生成代码的代码 之 POJO生成器 之二 模板实现

    在之前的一篇博客中,我们写了利用node.js来生成JAVA的POJO代码的方法.有评论说可以利用模板来做这件事.当时认为模板只能做简单的字符串替换,所以可能无法完成任务.但是,仔细的学习了一个模板 ...

  4. 8皇后问题(c++/python实现)

    问题描述:在8*8的国际象棋盘上摆放8个皇后,使其不能互相攻击,即任何两个皇后都不能处于同一行.同一列或者同一斜线上,问有多少种摆法. 算法分析: 利用3个数组分表来标记冲突,数组a.b.c. a数组 ...

  5. ASP.NET MVC网站使用新浪微博账号登录

    首先到http://open.weibo.com/development 注册一个开发者账号. 然后可以点微连接--网站接入 会分配App Key 和App Secret 然后点高级信息 在这里设置回 ...

  6. 【转载】CentOS中crontab定时计划任务的使用

    转载自:http://blog.csdn.net/testcs_dn/article/details/48780971 概述 利用“任务计划”,可以将任何脚本.程序或文档安排在某个最方便的时间运行.通 ...

  7. linux和docker的capabilities介绍

    验证环境:centos7 x86/64 内核版本4.19.9 在linux 2.2版本之前,当内核对进程进行权限验证的时候,可以将进程划分为两类:privileged(UID=0)和unprivile ...

  8. Hibernate的执行流程和集合的映射关系

    Hibernate的执行流程 集合映射 准被hibernate的运行环境 配置hibernate.cfg.xml主配置文件 1.Set集合 写User.java类 package com.gqx.co ...

  9. 27-hadoop-hbase安装

    hbase的安装分为单机模式和完全分布式 单机模式 单机模式的安装很简单, 需要注意hbase自己内置一个zookeeper, 如果使用单机模式, 那么该机器的zookeepr不可以启动 1, 添加j ...

  10. Charles抓包实战详解

    访问我的博客 前言 通过上一篇文章,想必你已经掌握了如何正确安装抓包神器 Charles,如果还是抓不了包,可以再看看. 今天要做是抓包实战,因为我在做网络文学的公司就职,所以就拿网络文学的 APP ...