洛谷P2261 [CQOI2007] 余数求和 [数论分块]
余数求和
题目背景
数学题,无背景
题目描述
给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如G(10, 5)=5 mod 1 + 5 mod 2 + 5 mod 3 + 5 mod 4 + 5 mod 5 …… + 5 mod 10=0+1+2+1+0+5+5+5+5+5=29
输入输出格式
输入格式:
两个整数n k
输出格式:
答案
输入输出样例
10 5
29
说明
30%: n,k <= 1000
60%: n,k <= 10^6
100% n,k <= 10^9
分析:
之前没怎么写过数论分块(蒟蒻并不会莫比乌斯反演),于是做道题练下手。
因为$a\%b=a-b*\lfloor \frac{a}{b}\rfloor$,所以我们所求的式子$\sum^n_{i=1}k\mod i$可以转化为$n*k-\sum^n_i{i*\lfloor\frac{k}{i}\rfloor}$。
和式的部分就可以用整除分块来做,复杂度就是$O(\sqrt{n})$的。
Code:
//It is made by HolseLee on 7th Nov 2018
//Luogu.org P2261
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; typedef long long ll;
ll n,k,ans; int main()
{
cin>>n>>k;
ans=n*k;
for(ll l=,r; l<=n; l=r+) {
if( l<=k ) r=min(k/(k/l),n);
else r=n;
ans-=(r-l+)*(r+l)*(k/l)/;
}
cout<<ans<<'\n';
return ;
}
洛谷P2261 [CQOI2007] 余数求和 [数论分块]的更多相关文章
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- 洛谷 P2261 [CQOI2007]余数求和
洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...
- LUOGU P2261 [CQOI2007]余数求和(数论分块)
传送门 解题思路 数论分块,首先将 \(k\%a\) 变成 \(k-a*\left\lfloor\dfrac{k}{a}\right\rfloor\)形式,那么\(\sum\limits_{i=1}^ ...
- 洛谷 P2261 [CQOI2007]余数求和 ||整除(数论)分块
参考:题解 令f(i)=k%i,[p]表示不大于p的最大整数f(i)=k%i=k-[k/i]*i令q=[k/i]f(i)=k-qi如果k/(i+1)=k/i=qf(i+1)=k-q(i+1)=k-qi ...
- 【洛谷P2261】余数求和
题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值. 题解:除法分块思想的应用. \(x\%y=x-y\lfloor {x\over y}\rfloor\),因 ...
- P2261 [CQOI2007]余数求和[整除分块]
题目大意 给出正整数 n 和 k 计算 \(G(n, k)=k\ \bmod\ 1 + k\ \bmod\ 2 + k\ \bmod\ 3 + \cdots + k\ \bmod\ n\) 的值 其中 ...
- 洛谷 2261 [CQOI2007]余数求和
题目戳这里 一句话题意 求 \(\sum_{i=1}^{n} (k ~~\texttt{mod} ~~i)\) Solution 30分做法: 说实话并不知道怎么办. 60分做法: 很明显直接一遍o( ...
随机推荐
- Problem C: 多线程 解题报告
Problem C: 多线程 Description 多线程是一种常见的加速手段,利用多个线程同时处理不同的任务可以一定程度上减少总耗时,达到提高效率的目的.然而,多个线程间的执行顺序是完全不可控的, ...
- java实现版本比较
package com.hzxc.chess.server.util; /** * Created by hdwang on 2018/3/19. * 版本比较工具类 */ public class ...
- sqlite3数据库的简要应用
Sqlite3数据库升级方案的变化. 1, 若是讲要升级的数据库版本更高,则从低版本数据库中拷贝与新数据库相同字段的内容,其他字段按照默认值创建.A->B->C这样逐个版本升级,每个版本 ...
- 001. MyBatis+SpringMVC+Spring[重置版]
说在前面的话 三阶段的课程知识点和细节很多,请假应该杜绝! 课后需抓紧时间复习,提高代码质量和速度! 课程周期和学习课程顺序为:[正常情况下] MyBatis 持久层框架 [2周] SpringMVC ...
- [转载]10款流行的Markdown编辑器
10款流行的Markdown编辑器 http://www.csdn.net/article/2014-05-05/2819623 作为一个开源人,如果你不会使用Markdown语法,那你就OUT了!M ...
- MyCat分库分表入门
1.分区 对业务透明,分区只不过把存放数据的文件分成了许多小块,例如mysql中的一张表对应三个文件.MYD,MYI,frm. 根据一定的规则把数据文件(MYD)和索引文件(MYI)进行了分割,分区后 ...
- RabbitMQ集群使用Haproxy负载均衡
(1).下载 http://www.haproxy.org/#down (2).解压 tar -zxvf haproxy-1.5.18.tar.gz (3).安装 1).编译 make TARGET= ...
- C++的那些事 1
最近在看c++的一些库文件,里面的一些比较陌生但看起来挺有用的一些东西,在此记下,以免日后看到再翻找资料. template <size_t _Nb> 这是在看bitset的时候看到的,之 ...
- .gitkeep
看一个开源项目中有个.gitkeep文件,不知道是干嘛用的查询知道 git是不允许提交一个空的目录到版本库上的,可以在空的文件夹里面建立一个.gitkeep文件,然后提交去即可. 其实在git中 .g ...
- MySQL自定义函数和存储过程的区别:
自定义函数和存储过程的区别: 1)一般来说,存储过程实现的功能要复杂一点,而函数的实现的功能针对性比较强.存储过程,功能强大,可以执行包括修改表等一系列数据库操作:用户定义函数不能用于执行一组修改全局 ...