[2016北京集训试题15]cot-[分块]
Description

Solution

如图,假如我们知道了以任何一个点为顶点的135-180度的前缀和和90-180度的前缀和,我们就可以搞出三角形的面积。
差分。add[i][j]和dev[i][j]都表示相对点[i][j-1],点[i][j]应该+或-的大小。这样只要我们需要,可以在O(n2)的时间里求出整个图的前缀和。
然后,不可能每一次查询都求一次前缀和的。考虑分块。记录当前添加的修改的操作数cnt。如果cnt=2500,则把图的前缀和全部求出来,对cnt,add,dev初始化。
假如中途有询问,就计算好之前分出的若干块对本次询问的贡献后,i直接从1到cnt枚举,判断当前的修改对询问的贡献。
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
int n,Q;int opt,x,y,a,cnt,xx[],yy[],aa[];
ll sum_slain[][],sum_line[][],num[][];
int add[][],dev[][],cur[][];
void work()
{
for (int i=;i<=n;i++) for (int j=;j<=i;j++)
{
add[i][j]+=add[i-][j];
dev[i][j]+=dev[i-][j-];
cur[i][j]=cur[i][j-]+add[i][j]-dev[i][j];
num[i][j]+=cur[i][j];
sum_line[i][j]=sum_line[i-][j]+sum_line[i][j-]-sum_line[i-][j-]+num[i][j];
sum_slain[i][j]=sum_slain[i-][j-]+sum_line[i][j-]-sum_line[i-][j-]+num[i][j];
}
memset(add,,sizeof(add));memset(dev,,sizeof(dev));cnt=;
}
ll ans;
int main()
{
scanf("%d%d",&n,&Q);
while (Q--)
{
scanf("%d%d%d%d",&opt,&x,&y,&a);
if (opt==)
{
cnt++;
add[x][y]++;add[x+a][y]--;
dev[x][y+]++;dev[x+a][y+a+]--;
xx[cnt]=x;yy[cnt]=y;aa[cnt]=a;
if (cnt==) work();
} else
{
ans=sum_slain[x+a-][y+a-]-sum_slain[x-][y-]-sum_line[x+a-][y-]+sum_line[x-][y-];
for (int i=;i<=cnt;i++)
{
int X=min(xx[i]+aa[i]-,x+a-);
int Y=max(yy[i],y);
int Z=max(xx[i]-yy[i],x-y);
int len=X-Z-Y+;
if (len>) ans+=1ll*len*(len+)/;
}
printf("%lld\n",ans);
}
} }
[2016北京集训试题15]cot-[分块]的更多相关文章
- [2016北京集训试题15]项链-[FFT]
Description Solution 设y[i+k]=y[i]+n. 由于我们要最优解,则假如将x[i]和y[σ[i]]连线的话,线是一定不会交叉的. 所以,$ans=\sum (x_{i}-y_ ...
- [2016北京集训试题14]股神小D-[LCT]
Description Solution 将(u,v,l,r)换为(1,u,v,l)和(2,u,v,r).进行排序(第4个数为第一关键字,第1个数为第二关键字).用LCT维护联通块的合并和断开.(维护 ...
- [2016北京集训试题6]mushroom-[bitset]
Description Solution bitset是个好东西啊..强行压位什么的真是够orz. 由于所有的蘑菇上房间的长相是一样的,我们针对每个房间,算出它到根节点的bitset和以它为根的子树的 ...
- [2016北京集训试题6]网络战争-[最小割树(网络流)+kd-tree+倍增]
Description A 联邦国有 N 个州,每个州内部都有一个网络系统,有若干条网络线路,连接各个 州内部的城市. 由于 A 国的州与州之间的关系不是太好,每个州都只有首府建立了到别的州的网络.具 ...
- [2016北京集训试题6]魔法游戏-[博弈论-sg函数]
Description Solution 首先,每个节点上的权值可以等价于该节点上有(它的权的二进制位数+1)个石子,每次可以拿若干个石子但不能不拿. 然后就发现这和NIM游戏很像,就计算sg函数em ...
- [2016北京集训试题8]连在一起的幻想乡[dp+无向图计数]
Description Solution 本博客参考yww大佬的博客,为了加深理解我就自己再写一遍啦. 以下的“无向图”均无重边无自环. 定义f0[n]为n个点构成的无向图个数,f1[n]为n个点构成 ...
- [2016北京集训试题7]thr-[树形dp+树链剖分+启发式合并]
Description Solution 神仙操作orz. 首先看数据范围,显然不可能是O(n2)的.(即绝对不是枚举那么简单的),我们考虑dp. 定义f(x,k)为以x为根的子树中与x距离为k的节点 ...
- (2016北京集训十)【xsy1528】azelso - 概率期望dp
北京集训的题都是好题啊~~(于是我爆0了) 注意到一个重要的性质就是期望是线性的,也就是说每一段的期望步数可以直接加起来,那么dp求出每一段的期望就行了... 设$f_i$表示从$i$出发不回到$i$ ...
- [2016北京集训测试赛15]statement-[线段树+拆环]
Description Solution 由于题目要求,将a[i]->b[i](边权为i)后所得的图应该是由森林和环套树组合而成. 假如是树形结构,所有的t[i]就直接在线段树t[i]点的dfs ...
随机推荐
- Android--自定义弹出框-自定义dialog
项目要用到弹出框,还要和苹果的样式一样(Android真是没地位),所以就自己定义了一个,不是很像(主要是没图),但是也还可以. 废话不多说了,直接上代码 1.先看布局文件 <?xml vers ...
- Prometheus Node_exporter 之 Memory Detail Meminfo /proc/meminfo
1. Memory Active / Inactive type: GraphUnit: bytesLabel: BytesInactive - 最近使用较少的内存, 优先被回收利用 /proc/me ...
- 有关 Azure IaaS VM 磁盘以及托管和非托管高级磁盘的常见问题解答
本文将对有关 Azure 托管磁盘和 Azure 高级存储的一些常见问题进行解答. 托管磁盘 什么是 Azure 托管磁盘? 托管磁盘是一种通过处理存储帐户管理来简化 Azure IaaS VM 的磁 ...
- Azure 门户中基于角色的访问控制入门
面向安全的公司应侧重于向员工提供他们所需的确切权限. 权限过多,可能会向攻击者公开帐户. 权限太少意味着员工无法有效地完成其工作. Azure 基于角色的访问控制 (RBAC) 可通过为 Azure ...
- sql server 日期时间与字符串的转换
一.sql server日期时间函数Sql Server中的日期与时间函数 1. 当前系统日期.时间 select getdate() 2. dateadd 在向指定日期加上一段时间的基 ...
- Sqlserver数据库中,跨权限执行语句
问题来源:最近有同事需要执行批量删除语句.根据他提供的业务需求,推荐他使用“TRUNCATE TABLE”语句.但使用该语句需要 ALTER权限,这与执行用户的角色不符. 解决办法:使用EXECUTE ...
- Active Directory、Exchange、单点登录,企业账号统一管理解决方案
现在的公司一般都会有很多内部管理系统,比如OA.ERP.CRM.邮件系统等.员工入职之后如果每个系统都创建一个账号和密码,首先员工记系统账号就是一件非常头疼的事情,如果公司有一百个系统那就得创建一百个 ...
- sysbench压力测试工具安装及使用
使用sysbench指定连接的时候不需要写上mysql-socket参数 如果自己使用sysbench来测试mysql性能的话,建议使用源码编译比较好,版本为0.4版本. 步骤是: .yum inst ...
- Hash问题----Hash强碰撞
包含内容:hellowword,byeworld文件md5,pdf1,2的sha1值. 等待笔记...
- Spring-AOP SpringBoot自动配置和启动Spring AOP
SpringBoot 会使用 @Conditional* 注解来进行判断是否需要自动启动 AOP,如果 classpath 下有 spring-aop 的 jar 和有 EnableAspectJAu ...