lightoj.1048.Conquering Keokradong(二分 + 贪心)
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu
Description
This winter we are going on a trip to Bandorban. The main target is to climb up to the top of Keokradong. So, we will use a trail. The trail is a continuous marked footpath that goes from Bandorban to Keokradong.
Part of the experience is also the route planning of the trip. We have a list of all possible campsites that we can use along the way and we want to do this trip so that we only stop K nights to camp. We also know in advance the distance between consecutive campsites and we are only allowed to camp at a campsite. Our goal is to plan the trip so that we minimize the maximum amount of walking done in a single day. In other words, if our trip involves 2 nights (3 days of walking), and we walk 9, 10, 5 miles on each day respectively, the cost (maximum amount of walking done in one day) is 10. Another schedule that involves walking 9, 6, 9 miles on each day has cost 9.
Given the distances between N consecutive campsites of a trail and given the number of nights for your trip, K, your task is to devise a camping strategy for the specified trail such that it minimizes the maximum amount of walking done in a single day. Note that the first distance value given is the distance from our start-point of the trail to our 1st campsite, and the last distance value given is the distance from our Nth campsite to our end-point of the trail.
Input
Input starts with an integer T (≤ 200), denoting the number of test cases.
Each case contains of two integers, the number of campsites, N (1 ≤ N ≤ 1000) and the number of nights of the trip, K (1 ≤ K ≤ min(N, 300)). The following N + 1 lines indicate the distance in miles between consecutive campsite locations. All the integers will be positive and less than10000.
Output
For each case of input you have to print the case number and the minimized cost as described above. Then print K+1 lines, each containing the amount of distance covered in ith day. As there can be many solutions, the primary target is to find the one which ensures that each day we have to walk some distance. For ties, print the one where the distance covered in first day is maximum, then the distance covered in second day is maximum and so on.
Sample Input
1
4 3
7
2
6
4
5
Sample Output
Case 1: 8
7
8
4
5
#include<stdio.h>
#include<string.h>
#include<algorithm>
const int inf = 0x3f3f3f3f ;
int n , m ;
int T ;
int a[] ;
int l , r ; bool solve (int mid)
{
int tmp = , cnt = ;
for (int i = ; i < n ; i ++) {
tmp += a[i] ;
if (tmp > mid) {
tmp = a[i] ;
cnt ++ ;
}
}
cnt ++ ;
return cnt > m ;
} int main ()
{
//freopen ("a.txt" , "r" , stdin ) ;
scanf ("%d" , &T) ;
int cas = ;
while (T --) {
scanf ("%d%d" , &n , &m ) ;
n ++ ; m ++ ;
l = - inf ;
r = ;
for (int i = ; i < n ; i ++) {
scanf ("%d" , &a[i]) ;
l = std::max (a[i] , l ) ;
r += a[i] ;
}
while (l <= r) {
int mid = ( l + r ) / ;
if (solve (mid) ) l = mid + ;
else r = mid - ;
}
printf ("Case %d: %d\n" , cas ++ , l ) ;
int sum = ;
int cnt = ;
for (int i = ; i < n ; i ++) {
sum += a[i] ;
if (sum > l) {
printf ("%d\n" , sum - a[i]) ;
sum = a[i] ;
cnt ++ ;
}
if (m - cnt + i >= n) {
printf ("%d\n" , sum ) ;
for (int j = i + ; j < n ; j ++) printf ("%d\n" , a[j]) ;
break ;
}
}
}
return ;
}
initial l = max{a[]} , r = sum {a[]} ;
很明显我们要求的x肯定在[l,r]这个区间内。
我们也能很容易求出:当组合后各个堆中最大的x已知时,至少需要走的天数 day。
所以我们令mid = (l + r)/ 2 ; 并求出对应的 day,if day > (k + 1) , 说明x的值应在[mid + 1,r]上 ; else , 便在[l,mid - 1]上(ps:至于为什么day == k + 1是也定位在这一块,是因为我们想令day “minimize”)。
而且因为我们所求的最后x,是指至少需要走的天数,所以很多情况下会比k + 1小,所以输出时应尽量让前面的a[i]相加贴近x,在最后到。。。就单个输出啊a[i]来补到k+1个。
lightoj.1048.Conquering Keokradong(二分 + 贪心)的更多相关文章
- 1048 - Conquering Keokradong
1048 - Conquering Keokradong PDF (English) Statistics Forum Time Limit: 1 second(s) Memory Limit: ...
- Conquering Keokradong && Get the Containers(二分)
Conquering Keokradong Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu ...
- Codeforces Gym 100231B Intervals 线段树+二分+贪心
Intervals 题目连接: http://codeforces.com/gym/100231/attachments Description 给你n个区间,告诉你每个区间内都有ci个数 然后你需要 ...
- 2016-2017 ACM-ICPC CHINA-Final Ice Cream Tower 二分+贪心
/** 题目:2016-2017 ACM-ICPC CHINA-Final Ice Cream Tower 链接:http://codeforces.com/gym/101194 题意:给n个木块,堆 ...
- 【bzoj2097】[Usaco2010 Dec]Exercise 奶牛健美操 二分+贪心
题目描述 Farmer John为了保持奶牛们的健康,让可怜的奶牛们不停在牧场之间 的小路上奔跑.这些奶牛的路径集合可以被表示成一个点集和一些连接 两个顶点的双向路,使得每对点之间恰好有一条简单路径. ...
- Codeforces_732D_(二分贪心)
D. Exams time limit per test 1 second memory limit per test 256 megabytes input standard input outpu ...
- CF732D Exams 二分 贪心
思路:二分+贪心 提交次数:10次以上 错因:刚开始以为二分(边界,$+1or-1$)写错了,调了半天,后来才发现是$ck()$写错了.开始只判了最后是否小于零,而应该中间一旦小于零就$return\ ...
- $CF949D\ Curfew$ 二分/贪心
正解:二分/贪心 解题报告: 传送门$QwQ$ 首先这里是二分还是蛮显然的?考虑二分那个最大值,然后先保证一个老师是合法的再看另一个老师那里是否合法就成$QwQ$. 发现不太会搞这个合不合法的所以咕了 ...
- $bzoj2067\ szn$ 二分+贪心
正解:二分+贪心 解题报告: 传送门$QwQ$ 题目大意就说有一棵树,然后要用若干条线覆盖所有边且不能重叠.问最少要用几条线,在用线最少的前提下最长的线最短是多长. 昂首先最少用多少条线这个还是蛮$e ...
随机推荐
- dojo树的节点添加链接的例子
1 . 下载dojotoolkit的src版,找到dijit/tests/tree/test_Custom_TreeNode.html,这是一个自定义节点的例子 2. http://dojotool ...
- C++ Pitfalls 之 reference to an object in a dynamically allocated containter
(留坑待填) Extraction from the C++ Programming Language 4th. ed., Bjarne Stroustrup 31.3.3 Size and Cap ...
- AngularJs 脏值检查及其相关
今天突然就想写写$digest和$apply,这些都是脏值检查的主体内容. 先以普通js来做一个简单的监控例子吧: var div = ducoment.getElementById("my ...
- 北京地铁站点遍历最少经站次数问题普遍意义上是一个NP问题,目前不存在多项式时间算法能够解决该问题
http://www.cnblogs.com/jiel/p/5852591.html 众所周知求一个图的哈密顿回路是一个NPC问题: In the mathematical field of grap ...
- Fix failed to start session in Ubuntu
When you are at login, press Ctrl+Alt+F1. It will take you to command line interface from the GUI. I ...
- Docker入门教程(三)Dockerfile
Docker入门教程(三)Dockerfile [编者的话]DockerOne组织翻译了Flux7的Docker入门教程,本文是系列入门教程的第三篇,介绍了Dockerfile的语法,DockerOn ...
- 网摘 窗体的旋转效果 wpf
<Window x:Class="simplewpf.chuantixx" Name="DW1" xmlns="http://s ...
- SQL Server 2012 学习笔记2
1. 新建数据库 可以在对应目录下右键新建数据库,也可以用程序添加: 先打开程序编辑对话框"New Query" create database Library 2. 添加表格 可 ...
- Win7、Ubuntu双系统正确卸载Ubuntu系统
正确的删除ubuntu方法如下: 第1步,修复MBR 1.进入win7,下载个软件MbrFix,放在C:windowssystem32文件夹中 2.点击开始>所有程序>附件>命令提示 ...
- Datatable的Select()
利用datatable的select方法筛选出符合条件的datarow进行操作 Select() Select(string filterExpression) Select(string filte ...