Evolutionary Computing: 4. Review
Resource:《Introduction to Evolutionary Computing》
1. What is an evolutionary algorithm?
There are many different variants of evolutionary algorithms. The common underlying behind all these techniques is the same: given a population of individuals within some environment that has limited resources, competition for those resources causes natural selection (survival of the fittest)
2. Components of Evolutionary Algorithms
- Representation (definition of individuals)
- Evalution function (or fitness function)
- Population
- Parent selection mechanism
- Variation operators, recombination and mutation
- Survivor selection mechanism (replacement)
- Initialisation procedure
- Termination condition
The general scheme of an evolutionary algorithm as a flowchart:
The general scheme of an evolutionary algorithm in pseudocode:
3. Genetic Algorithms
3.1 Introduction
This is commonly referred as a means of generating new candidate solutions.
This has:
- a binary representation
- fitness proportionate selection
- a low probability of mutation
- an emphasis on genetically inspired recombination as a means of generating new candidate solutions.
An introductory example: f(x) = x^2
3.2 Representation of Individuals
- binary representations
- integer representations
- real-valued or floating-point representation
- permutation representation
3.3 Mutation
- mutation for binary representations
- mutation operators for integer representations
- mutation operators for floating-point representations
- mutation operators for permutation representations
3.4 Recombination
- recombination operators for binary representations
- recombination operators for integer representations
- recombination operators for floating-point representations
- recombination operators for permutation representations
- multiparent recombination
3.5 Population models
- generational model
- steady-state model
generational model: In each generation we begin with a population of size μ, from which a mating pool of μ parents is selected. Next, λ (=μ) offspring are created from the mating pool by the application of variantion operators, and evaluated. After each generation, the whole population is replaced by its offspring, which is called the "next generation".
steady state model: The entire population is not changed at once, but rather a part of it. In this case, λ (<μ) old individuals are replaced by λ new ones, the offspring. The percentage of the population that is replaced is called the generational gap, and is equal to λ/μ. Usually, λ = 1 and a corresponding generation gap of 1/μ.
3.6 Parent Selection
- fitness proportional selection
- ranking selection
- implementing selection probabilities
- tournament selection
3.7 Survivor Selection
The survivor selection mechanism is responsible for managing the process whereby the working memory of the GA is reduced from a set of μ parents and λ offspring to produce the set of μ individuals for the next generation.
This step in the main evolutionary cycle is also called replacement.
age-based replacement
fitness-based replacement
Evolutionary Computing: 4. Review的更多相关文章
- Evolutionary Computing: 5. Evolutionary Strategies(2)
Resource: Introduction to Evolutionary Computing, A.E.Eliben Outline recombination parent selection ...
- Evolutionary Computing: 5. Evolutionary Strategies(1)
resource: Evolutionary computing, A.E.Eiben Outline What is Evolution Strategies Introductory Exampl ...
- Evolutionary Computing: 1. Introduction
Outline 什么是进化算法 能够解决什么样的问题 进化算法的重要组成部分 八皇后问题(实例) 1. 什么是进化算法 遗传算法(GA)是模拟生物进化过程的计算模型,是自然遗传学与计算机科学相互结合的 ...
- Evolutionary Computing: [reading notes]On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System
resource: On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System ...
- Evolutionary Computing: Assignments
Assignment 1: TSP Travel Salesman Problem Assignment 2: TTP Travel Thief Problem The goal is to find ...
- Evolutionary Computing: multi-objective optimisation
1. What is multi-objective optimisation [wikipedia]: Multi-objective optimization (also known as mul ...
- Evolutionary Computing: 3. Genetic Algorithm(2)
承接上一章,接着写Genetic Algorithm. 本章主要写排列表达(permutation representations) 开始先引一个具体的例子来进行表述 Outline 问题描述 排列表 ...
- Evolutionary Computing: 2. Genetic Algorithm(1)
本篇博文讲述基因算法(Genetic Algorithm),基因算法是最著名的进化算法. 内容依然来自博主的听课记录和教授的PPT. Outline 简单基因算法 个体表达 变异 重组 选择重组还是变 ...
- [Z] 计算机类会议期刊根据引用数排名
一位cornell的教授做的计算机类期刊会议依据Microsoft Research引用数的排名 link:http://www.cs.cornell.edu/andru/csconf.html Th ...
随机推荐
- ultraedit正则使用
下面是从UltraEdit文档中摘录的语法说明: 正则表达式 (UltraEdit 语法): 符号 功能 % 匹配行首 – 表示搜索字符串必须在行首,但不包括任何选定的结果字符中的行终止字符. $ 匹 ...
- 百度地图API-自定义图标覆盖物
地图覆盖物 Overlay:覆盖物的抽象基类,所有的覆盖物均继承此类的方法. Marker:标注表示地图上的点,可自定义标注的图标. Label:表示地图上的文本标注,您可以自定义标注的文本内容. P ...
- JMeter学习-021-JMeter 定时器(Synchronizing Timer)之集合点应用
性能测试中我们经常提到一个概念就是“并发”,其实在实际真实的性能测试中是不存在真正的并发的.为了更真实的模拟对一个请求的并发测试场景,我们通常设置一个集合点,JMeter中提供了这样的一个功能设置. ...
- LeetCode Best Time to Buy and Sell Stock with Cooldown
原题链接在这里:https://leetcode.com/problems/best-time-to-buy-and-sell-stock-with-cooldown/ 题目: Say you hav ...
- 多个java文件编译并打成jar包经典方法
首先,多个java文件的编译 find . -type f -name *.java > compilelist (.代表当前路径) javac -cp "$CLASSPATH&quo ...
- openfalcon客户端自定义push 传输到transfer
. linux客户端部署agent . 编写脚本,比如: #!/usr/bin/env python #!-*- coding:utf8 -*- import requests import time ...
- [原创]java WEB学习笔记102:Spring学习---Spring Bean配置:bean配置方式(工厂方法(静态工厂方法 & 实例工厂方法)、FactoryBean) 全类名
本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...
- jsp:中文乱码解决
说明:request乱码指的是:浏览器向服务器发送的请求参数中包含中文字符,服务器获取到的请求参数的值是乱码: response乱码指的是:服务器向浏览器发送的数据包含中文字符,浏览器中显示的是乱码: ...
- transform scale 背景图片模糊怎么办?
transform: translateZ(0) scale(1, 1); 就是这样(摊手表情),不晓得什么原理.
- ssh-keygen -t rsa P “” -f ~/.ssh/id_rsa不提示直接生成密钥
ssh-keygen -t rsa P "" -f ~/.ssh/id_rsa不提示直接生成密钥