Evolutionary Computing: 4. Review
Resource:《Introduction to Evolutionary Computing》
1. What is an evolutionary algorithm?
There are many different variants of evolutionary algorithms. The common underlying behind all these techniques is the same: given a population of individuals within some environment that has limited resources, competition for those resources causes natural selection (survival of the fittest)
2. Components of Evolutionary Algorithms
- Representation (definition of individuals)
- Evalution function (or fitness function)
- Population
- Parent selection mechanism
- Variation operators, recombination and mutation
- Survivor selection mechanism (replacement)
- Initialisation procedure
- Termination condition
The general scheme of an evolutionary algorithm as a flowchart:
The general scheme of an evolutionary algorithm in pseudocode:
3. Genetic Algorithms
3.1 Introduction
This is commonly referred as a means of generating new candidate solutions.
This has:
- a binary representation
- fitness proportionate selection
- a low probability of mutation
- an emphasis on genetically inspired recombination as a means of generating new candidate solutions.
An introductory example: f(x) = x^2
3.2 Representation of Individuals
- binary representations
- integer representations
- real-valued or floating-point representation
- permutation representation
3.3 Mutation
- mutation for binary representations
- mutation operators for integer representations
- mutation operators for floating-point representations
- mutation operators for permutation representations
3.4 Recombination
- recombination operators for binary representations
- recombination operators for integer representations
- recombination operators for floating-point representations
- recombination operators for permutation representations
- multiparent recombination
3.5 Population models
- generational model
- steady-state model
generational model: In each generation we begin with a population of size μ, from which a mating pool of μ parents is selected. Next, λ (=μ) offspring are created from the mating pool by the application of variantion operators, and evaluated. After each generation, the whole population is replaced by its offspring, which is called the "next generation".
steady state model: The entire population is not changed at once, but rather a part of it. In this case, λ (<μ) old individuals are replaced by λ new ones, the offspring. The percentage of the population that is replaced is called the generational gap, and is equal to λ/μ. Usually, λ = 1 and a corresponding generation gap of 1/μ.
3.6 Parent Selection
- fitness proportional selection
- ranking selection
- implementing selection probabilities
- tournament selection
3.7 Survivor Selection
The survivor selection mechanism is responsible for managing the process whereby the working memory of the GA is reduced from a set of μ parents and λ offspring to produce the set of μ individuals for the next generation.
This step in the main evolutionary cycle is also called replacement.
age-based replacement
fitness-based replacement
Evolutionary Computing: 4. Review的更多相关文章
- Evolutionary Computing: 5. Evolutionary Strategies(2)
Resource: Introduction to Evolutionary Computing, A.E.Eliben Outline recombination parent selection ...
- Evolutionary Computing: 5. Evolutionary Strategies(1)
resource: Evolutionary computing, A.E.Eiben Outline What is Evolution Strategies Introductory Exampl ...
- Evolutionary Computing: 1. Introduction
Outline 什么是进化算法 能够解决什么样的问题 进化算法的重要组成部分 八皇后问题(实例) 1. 什么是进化算法 遗传算法(GA)是模拟生物进化过程的计算模型,是自然遗传学与计算机科学相互结合的 ...
- Evolutionary Computing: [reading notes]On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System
resource: On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System ...
- Evolutionary Computing: Assignments
Assignment 1: TSP Travel Salesman Problem Assignment 2: TTP Travel Thief Problem The goal is to find ...
- Evolutionary Computing: multi-objective optimisation
1. What is multi-objective optimisation [wikipedia]: Multi-objective optimization (also known as mul ...
- Evolutionary Computing: 3. Genetic Algorithm(2)
承接上一章,接着写Genetic Algorithm. 本章主要写排列表达(permutation representations) 开始先引一个具体的例子来进行表述 Outline 问题描述 排列表 ...
- Evolutionary Computing: 2. Genetic Algorithm(1)
本篇博文讲述基因算法(Genetic Algorithm),基因算法是最著名的进化算法. 内容依然来自博主的听课记录和教授的PPT. Outline 简单基因算法 个体表达 变异 重组 选择重组还是变 ...
- [Z] 计算机类会议期刊根据引用数排名
一位cornell的教授做的计算机类期刊会议依据Microsoft Research引用数的排名 link:http://www.cs.cornell.edu/andru/csconf.html Th ...
随机推荐
- Rectangle Area || LeetCode
把交叉点的坐标求出来即可. #define max(a,b) ( (a)>(b)?(a):(b) ) #define min(a,b) ( (a)<(b)?(a):(b) ) int co ...
- centos7下快速安装mysql
CentOS 7的yum源中貌似没有正常安装MySQL时的mysql-sever文件,需要去官网上下载 # wget http://dev.mysql.com/get/mysql-community- ...
- Android利用canvas画各种图形(点、直线、弧、圆、椭圆、文字、矩形、多边形、曲线、圆角矩形) .
1.首先说一下canvas类: Class Overview The Canvas class holds the "draw" calls. To draw something, ...
- CentOS 配置网络yum源
配置网络yum源(需要保证外网开通,使用网易163提供开源镜像站) 1.下载repo文件 方法一:下载到本地windows再上传到linux服务器上: 下载地址 : http://mirrors.16 ...
- jquery例子
jquery <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...
- javascript源代码学习之五——jQuery.deferred
jQuery.Defered——异步队列用于管理一组回调函数(成功resolve,失败reject,消息progress),基于上一节实现的jQuery.callbacks完成. done,fail, ...
- [Android Tips] 10. Pull out /data/data/${package_name} files without root access
#!/usr/bin/env bash PACKAGE_NAME=com.your.package DB_NAME=data.db rm -rf ${DB_NAME} adb shell " ...
- electron开发(一)
0. 简介 http://electron.atom.io/ 官网 https://www.v2ex.com/t/277623 基于 Electron 的 Linux 下的网易云音乐 https: ...
- struts2-通配符映射(基本没啥卵用)和动态调用
通配符 使用*代表任意字符 一般在action的name中使用*,并可以使用多个 可以使用{通配符的序号}引用对应的通配符所代表的值,序号从1开始 {0}代表整个URI 匹配规则 首先完全匹配,没有完 ...
- Unity 对象查找
GameObject.Find() 对象名 可查找带不带脚本,不能查隐藏,有可能不是要找的对象 GameObject.Find() 目录结构 可查找带不带脚本,能查隐藏,能确定是要找的对象 trans ...