Resource:《Introduction to Evolutionary Computing》


1. What is an evolutionary algorithm?

There are many different variants of evolutionary algorithms. The common underlying behind all these techniques is the same: given a population of individuals within some environment that has limited resources, competition for those resources causes natural selection (survival of the fittest)

2. Components of Evolutionary Algorithms

  • Representation (definition of individuals)
  • Evalution function (or fitness function)
  • Population
  • Parent selection mechanism
  • Variation operators, recombination and mutation
  • Survivor selection mechanism (replacement)
  • Initialisation procedure
  • Termination condition

The general scheme of an evolutionary algorithm as a flowchart:

  

The general scheme of an evolutionary algorithm in pseudocode:

  

3. Genetic Algorithms

3.1 Introduction

This is commonly referred as a means of generating new candidate solutions.

This has:

  • a binary representation
  • fitness proportionate selection
  • a low probability of mutation
  • an emphasis on genetically inspired recombination as a means of generating new candidate solutions.

An introductory example: f(x) = x^2

3.2 Representation of Individuals

  • binary representations
  • integer representations
  • real-valued or floating-point representation
  • permutation representation

3.3 Mutation

  • mutation for binary representations
  • mutation operators for integer representations
  • mutation operators for floating-point representations
  • mutation operators for permutation representations

3.4 Recombination

  • recombination operators for binary representations
  • recombination operators for integer representations
  • recombination operators for floating-point representations
  • recombination operators for permutation representations
  • multiparent recombination

3.5 Population models

  • generational model
  • steady-state model

generational model: In each generation we begin with a population of size μ, from which a mating pool of μ parents is selected. Next, λ (=μ) offspring are created from the mating pool by the application of variantion operators, and evaluated. After each generation, the whole population is replaced by its offspring, which is called the "next generation".

steady state model: The entire population is not changed at once, but rather a part of it. In this case, λ (<μ) old individuals are replaced by  λ new ones, the offspring. The percentage of the population that is replaced is called the generational gap, and is equal to  λ/μ. Usually,  λ = 1 and a corresponding generation gap of 1/μ.

3.6 Parent Selection

  • fitness proportional selection
  • ranking selection
  • implementing selection probabilities
  • tournament selection

3.7 Survivor Selection

The survivor selection mechanism is responsible for managing the process whereby the working memory of the GA is reduced from a set of μ parents and  λ offspring to produce the set of μ individuals for the next generation.

This step in the main evolutionary cycle is also called replacement.

age-based replacement

fitness-based replacement

Evolutionary Computing: 4. Review的更多相关文章

  1. Evolutionary Computing: 5. Evolutionary Strategies(2)

    Resource: Introduction to Evolutionary Computing, A.E.Eliben Outline recombination parent selection ...

  2. Evolutionary Computing: 5. Evolutionary Strategies(1)

    resource: Evolutionary computing, A.E.Eiben Outline What is Evolution Strategies Introductory Exampl ...

  3. Evolutionary Computing: 1. Introduction

    Outline 什么是进化算法 能够解决什么样的问题 进化算法的重要组成部分 八皇后问题(实例) 1. 什么是进化算法 遗传算法(GA)是模拟生物进化过程的计算模型,是自然遗传学与计算机科学相互结合的 ...

  4. Evolutionary Computing: [reading notes]On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System

    resource: On the Life-Long Learning Capabilities of a NELLI*: A Hyper-Heuristic Optimisation System ...

  5. Evolutionary Computing: Assignments

    Assignment 1: TSP Travel Salesman Problem Assignment 2: TTP Travel Thief Problem The goal is to find ...

  6. Evolutionary Computing: multi-objective optimisation

    1. What is multi-objective optimisation [wikipedia]: Multi-objective optimization (also known as mul ...

  7. Evolutionary Computing: 3. Genetic Algorithm(2)

    承接上一章,接着写Genetic Algorithm. 本章主要写排列表达(permutation representations) 开始先引一个具体的例子来进行表述 Outline 问题描述 排列表 ...

  8. Evolutionary Computing: 2. Genetic Algorithm(1)

    本篇博文讲述基因算法(Genetic Algorithm),基因算法是最著名的进化算法. 内容依然来自博主的听课记录和教授的PPT. Outline 简单基因算法 个体表达 变异 重组 选择重组还是变 ...

  9. [Z] 计算机类会议期刊根据引用数排名

    一位cornell的教授做的计算机类期刊会议依据Microsoft Research引用数的排名 link:http://www.cs.cornell.edu/andru/csconf.html Th ...

随机推荐

  1. Wordpress本地伪静态设置

    遇到的问题: 在主题的目录页,用wordpress默认链接方式是的,但是改了固定链接结构为:/%post_id%.html后,就访问不了了,开始以为是我主题的问题,然后切换为官方主题也是访问不了,而神 ...

  2. wireless tool 移植

    在linux上调试wifi, 需要移植wireless tool进行验证,本文记录移植方法. 参考链接 http://www.cnblogs.com/zengjfgit/p/5601473.html ...

  3. JQuery 支持 hide 和 show 事件的方法与分析

    问题提出  JQuery不支持hide和show作为事件形式出现, 实际上这两个仅仅是JQuery对象的一个方法(fn): 有一类UI交互需求,根据一个DOM对象的或者显示对附属的DOM对象做相同操作 ...

  4. 记一次奇怪IE动态加载js的乱码

    1. 问题背景 某个老产品需要支持IE8,前端部分组件采用scrat开发体系进行开发的,当页面中内嵌的iframe的页面再加载组件js的时候,某些情况下会出现组件的js乱码,导致组件的js不能运行.而 ...

  5. 自动生成pdf书签(仅适用于Adobe Acrobat on windows )

    必备软件 1.Adobe Acrobat. 2.AutoBookmark 为adobe acrobat的自动生成书签的插件(我用的这个:AutoBookmark Standard Plug-in),下 ...

  6. Java基础之扩展GUI——使用字体对话框(Sketcher 5 displaying a font dialog)

    控制台程序. 为了可以选择系统支持的字体,我们定义了一个FontDialog类: // Class to define a dialog to choose a font import java.aw ...

  7. BAT脚本打印空行的使用方法

    @echo off echo= echo, echo; echo+ echo/ echo[ echo] echo: echo. echo\ pause 这十种方法可以分为三组,每组的效率依次递减. 至 ...

  8. Eclipse创建maven的Web项目

    MAVEN作用:管理jar包 1.首先新建一个maven项目,看图: 2.按照以上步骤就可以创建一个maven项目,可以看到最下图的目录结构,但是这样的目录结构是不对的,需要做一些修改. 首先为了避免 ...

  9. JQ 操作 radio、checkbox 、select

    MXS&Vincene  ─╄OvЁ  &0000026─╄OvЁ  MXS&Vincene MXS&Vincene  ─╄OvЁ:今天很残酷,明天更残酷,后天很美好, ...

  10. vm虚拟机启动失败 Global\vmx86

    workstation12 PRO 启动虚拟机异常报错:无法打开内核设备“\\.\Global\vmx86”: 系统找不到指定的文件 解决方法,启动windows系统服务: