“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第10章课程讲义下载(PDF)

Summary

  • Definition
    If $[A]$ is a $n\times n$ matrix, then $[X]\neq \vec0$ is an eigenvector of $[A]$ if $$[A][X] = \lambda[X]$$ where $\lambda$ is a scalar and $[X]\neq0$.
    The scalar $\lambda$ is called the eigenvalue of $[A]$ and $[X]$ is called the eigenvector corresponding to the eigenvalue $\lambda$.
  • Finding eigenvalue and eigenvector
    • To find the eigenvalues of a $n\times n$ matrix $[A]$, we have $$AX=\lambda X$$ $$\Rightarrow AX-\lambda X=0$$ $$\Rightarrow (A-\lambda I)X=0$$ For the above set of equations to have a non-zero solution $$\det(A-\lambda I) = 0$$ The above equation is called the characteristic equation of $[A]$, which gives $$\lambda^n + c_1\lambda^{n-1} + \cdots + c_n=0$$ Hence this polynomial has $n$ roots.
    • For example, finding the eigenvalues of the matrix $$[A] = \begin{bmatrix}3& -1.5\\ -0.75& 0.75 \end{bmatrix}$$ We have $$A-\lambda I = \begin{bmatrix}3 - \lambda & -1.5\\ -0.75& 0.75 - \lambda \end{bmatrix}$$ $$\det(A - \lambda I) = (3-\lambda)(0.75-\lambda) - (-0.75)(-1.5)$$ $$\Rightarrow \lambda^2-3.75\lambda + 1.125 =0$$ $$\Rightarrow \lambda = {3.75\pm\sqrt{{3.75}^{2} - 4.5}\over2} = 3.421165,\ 0.3288354$$ That is, the eigenvalues are 3.421165 and 0.3288354.
    • To find the eigenvectors of the above matrix $[A]$. Let $[X] = \begin{bmatrix}x_1 \\ x_2\end{bmatrix}$ and we already have $\lambda_1 = 3.421165$ and $\lambda_2 = 0.3288354$.
      When $\lambda = 3.421165$, from the definition we have $$(A-\lambda I)X=0$$ $$\Rightarrow \left(\begin{bmatrix}3& -1.5\\ -0.75& 0.75 \end{bmatrix} - \begin{bmatrix}3.421165& 0\\ 0& 3.421165 \end{bmatrix} \right) \begin{bmatrix}x_1 \\ x_2\end{bmatrix} = 0$$ $$\Rightarrow \begin{bmatrix}-0.421165& -1.5\\ -0.75& -2.671165 \end{bmatrix} \begin{bmatrix}x_1 \\ x_2\end{bmatrix} = \begin{bmatrix}0 \\ 0\end{bmatrix}$$ $$\Rightarrow -0.421165x_1 -1.5x_2 = 0 \Rightarrow x_2 = -0.2807767x_1$$ that is, $$[X] = \begin{bmatrix}x_1\\ -0.2807767x_1\end{bmatrix} = x_1\begin{bmatrix}1 \\ -0.2807767\end{bmatrix}$$ Hence the eigenvector corresponding to $\lambda_1 = 3.421165$ is $$\begin{bmatrix}1 \\ -0.2807767\end{bmatrix}$$ Similarly, we have calculate the eigenvector corresponding to $\lambda_2 = 0.3288354$: $$ \left(\begin{bmatrix}3& -1.5\\ -0.75& 0.75 \end{bmatrix} - \begin{bmatrix}0.3288354& 0\\ 0& 0.3288354 \end{bmatrix} \right) \begin{bmatrix}x_1 \\ x_2\end{bmatrix} = 0$$ $$\Rightarrow \begin{bmatrix}2.671165& -1.5\\ -0.75& 0.4211646 \end{bmatrix} \begin{bmatrix}x_1 \\ x_2\end{bmatrix} = \begin{bmatrix}0 \\ 0\end{bmatrix}$$ $$\Rightarrow 2.671165x_1 -1.5x_2 = 0 \Rightarrow x_2 = 1.780776x_1$$ that is, $$[X] = \begin{bmatrix}x_1\\ 1.780776x_1\end{bmatrix} = x_1\begin{bmatrix}1 \\ 1.780776\end{bmatrix}$$ Hence the eigenvector corresponding to $\lambda_1 = 0.3288354$ is $$\begin{bmatrix}1 \\ 1.780776\end{bmatrix}$$
  • Some related theorems
    • If $[A]$ is a $n\times n$ triangular matrix - upper triangular, lower triangular and diagonal, the eigenvalues of $[A]$ are the diagonal entries of $[A]$.
    • $\lambda = 0$ is an eigenvalue of $[A]$ if $[A]$ is a singular (non-invertible) matrix.
    • $[A]$ and $[A]^{T}$ have the same eigenvalues.
    • Eigenvalues of a symmetric matrix are real.
    • Eigenvectors of a symmetric matrix are orthogonal, but only for distinct eigenvalues.
    • $|\det(A)|$ is the product of the absolute values of the eigenvalues of $[A]$.
  • Power Method
    • One of the most common methods used for finding eigenvalues and eigenvectors is the power method. It is used to find the largest eigenvalue in an absolute sense. Note that if this largest eigenvalues is repeated, this method will not work. Also this eigenvalue needs to be distinct.
    • The method is as follows:
      1. Assume a guess $X^{(0)}$ for the eigenvector in $$AX=\lambda X$$ equation. One of the entries of $X^{(0)}$ needs to be unity.
      2. Find $$Y^{(1)} = AX^{(0)}$$
      3. Scale $Y^{(1)}$ so that the chosen unity component remains unity. $$Y^{(1)} = \lambda^{(1)}X^{(1)}$$
      4. Repeat steps 2 and 3 with $X=X^{(1)}$ to get $X^{(2)}$.
      5. Repeat steps 2 and 3 until the value of the eigenvalue converges.
    • For example, using the power method, find the largest eigenvalue and the corresponding eigenvectors of $$[A] = \begin{bmatrix}1.5& 0& 1\\ -0.5& 0.5& -0.5\\ -0.5& 0& 0 \end{bmatrix}$$ given with the initial guess $\begin{bmatrix}1\\ 1\\ 1 \end{bmatrix}$.
      From the algorithm, we have $$AX^{(0)} = \begin{bmatrix}1.5& 0& 1\\ -0.5& 0.5& -0.5\\ -0.5& 0& 0 \end{bmatrix} \begin{bmatrix}1\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix}2.5\\ -0.5\\ -0.5 \end{bmatrix}$$ $$\Rightarrow Y^{(1)} = 2.5\begin{bmatrix}1\\ -0.2\\ -0.2 \end{bmatrix} $$ so $\lambda^{(1)} = 2.5$ and $X^{(1)} = \begin{bmatrix}1\\ -0.2\\ -0.2 \end{bmatrix}$. Note that we choose the first element of $X^{(0)}$ to be unity. Then $$AX^{(1)} = \begin{bmatrix}1.5& 0& 1\\ -0.5& 0.5& -0.5\\ -0.5& 0& 0 \end{bmatrix} \begin{bmatrix}1\\ -0.2\\ -0.2 \end{bmatrix} = \begin{bmatrix}1.3\\ -0.5\\ -0.5 \end{bmatrix}$$ $$\Rightarrow Y^{(2)} = 1.3\begin{bmatrix}1\\ -0.3846\\ -0.3846 \end{bmatrix}$$ so $\lambda^{(2)} = 1.3$ and $X^{(2)} = \begin{bmatrix}1\\ -0.3846\\ -0.3846 \end{bmatrix}$.
      Thus far, the absolute relative approximate error in the eigenvalues is $$|\varepsilon| = \left|{\lambda^{(2)}-\lambda^{(1)}\over \lambda^{(2)}}\right| = \left|{1.3-2.5\over1.3}\right| = 0.9230769$$ Conducting further iterations, the eigenvalue after 5 iterations is 1.02459 and its absolute relative approximate error is 0.012441.
      The exact value of the eigenvalue is $\lambda = 1$ and the corresponding eigenvector is $$X=\begin{bmatrix}1\\-0.5\\-0.5 \end{bmatrix}$$
    • R code

      This function includes 4 parameters:

      • A is the target matrix;
      • x0 is the initial guess which is a vector;
      • eps is the tolerance of the error which can be modified;
      • maxit is the maximum number of iterations in the process.

      We can calculate the previous example by using this script:

      A = matrix(c(1.5, -0.5, -0.5, 0, 0.5, 0, 1, -0.5, 0), ncol = 3)
      PowerEigen(A, x0 = c(1, 1, 1))
      Converged after 23 iterations
      $value
      [1] 1
      $vector
      [,1]
      [1,] 1.0
      [2,] -0.5
      [3,] -0.5

Selected Problems

1. The eigenvalues $\lambda$ of matrix $[A]$ are found by solving the equation ( ).

Solution: $$|A-\lambda I| = 0$$

2. Find the eigenvalues and eigenvectors of $$[A] = \begin{bmatrix} 10& 9\\ 2& 3\end{bmatrix}$$ using the determinant method.

Solution: $$|A-\lambda I| = 0$$ $$\Rightarrow \det\left(\begin{bmatrix} 10-\lambda & 9\\ 2 & 3-\lambda\end{bmatrix}\right) = 0$$ $$\Rightarrow (10-\lambda)(3-\lambda) - 18=0$$ $$\Rightarrow \lambda^2 - 13\lambda +12 =0$$ $$\Rightarrow \lambda_1=1,\ \lambda_2=12$$ For $\lambda_1=1$, we have $$\begin{bmatrix} 10-\lambda & 9\\ 2 & 3-\lambda\end{bmatrix} \begin{bmatrix}x_1 \\ x_2\end{bmatrix} =\begin{bmatrix} 0\\ 0\end{bmatrix} $$ $$\Rightarrow \begin{bmatrix} 9 & 9\\ 2 & 2\end{bmatrix}\begin{bmatrix}x_1 \\ x_2\end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$ $$\Rightarrow x_2 =-x_1$$ $$\Rightarrow X=\begin{bmatrix}x_1\\ -x_1 \end{bmatrix} = x_1\begin{bmatrix} 1\\ -1\end{bmatrix}$$ Thus the eigenvector corresponding to $\lambda_1=1$ is $\begin{bmatrix} 1\\ -1\end{bmatrix}$. Similarly, we can find the second eigenvector corresponding to $\lambda_2=12$: $$\begin{bmatrix} 10-\lambda & 9\\ 2 & 3-\lambda\end{bmatrix} \begin{bmatrix}x_1 \\ x_2\end{bmatrix} =\begin{bmatrix} 0\\ 0\end{bmatrix} $$ $$\Rightarrow \begin{bmatrix} -2 & 9\\ 2 & -9\end{bmatrix}\begin{bmatrix}x_1 \\ x_2\end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$ $$\Rightarrow -2x_1+9x_2 = 0 \Rightarrow x_2 = {2\over9}x_1$$ $$\Rightarrow X=\begin{bmatrix}x_1\\ {2\over9}x_1 \end{bmatrix} = x_1\begin{bmatrix} 1\\ {2\over9}\end{bmatrix} \Rightarrow \begin{bmatrix} 9\\ 2\end{bmatrix}$$ Thus the eigenvector corresponding to $\lambda_2=12$ is $\begin{bmatrix} 9\\ 2\end{bmatrix}$.

3. Find the eigenvalues and eigenvectors of $$[A] = \begin{bmatrix}4& 0& 1\\ -2& 0& 1\\ 2& 0& 1\end{bmatrix}$$ using the determinant method.

Solution:

First of all, we can read off that $\lambda = 0$ is an eigenvalue of this matrix since it is singular. Then from the definition we have $$|A-\lambda I| = 0$$ $$\Rightarrow \det\left( \begin{bmatrix} 4-\lambda & 0 & 1\\ -2 & -\lambda & 1\\ 2 & 0& 1-\lambda \end{bmatrix}\right) = 0$$ $$\Rightarrow (4-\lambda)\left[(-\lambda)(1-\lambda) - 0\right]+\left[1\cdot(0+2\lambda)\right] =0$$ $$\Rightarrow (4-\lambda)(\lambda^2-\lambda) +2\lambda= 0$$ $$\Rightarrow \lambda(-\lambda^2+5\lambda-4+2) =0$$ $$\Rightarrow \lambda(\lambda^2-5\lambda+2) =0$$ $$\Rightarrow \lambda_1=0,\ \lambda_2 = 4.561553,\ \lambda_3=0.4384472.$$ For $\lambda_1 =0$, we have $$\begin{bmatrix} 4-\lambda & 0 & 1\\ -2 & -\lambda & 1\\ 2 & 0& 1-\lambda \end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix}=\begin{bmatrix}0\\ 0\\ 0 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} 4 & 0 & 1\\ -2 & 0 & 1\\ 2 & 0& 1 \end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$ The coefficient matrix is $$\begin{bmatrix} 4& 0& 1\\ -2& 0& 1\\ 2& 0& 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 0& 0& 3\\ -2& 0& 1\\ 0& 0& 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 0& 0& 0\\ -2& 0& 0\\ 0& 0& 2 \end{bmatrix}$$ that is, $x_1=x_3=0$ and $x_2$ is arbitrary. Hence the eigenvector corresponding to $\lambda_1=0$ is $\begin{bmatrix}0 \\ 1\\ 0 \end{bmatrix}$. For $\lambda_2= 4.561553$, we have $$\begin{bmatrix} 4-\lambda & 0 & 1\\ -2 & -\lambda & 1\\ 2 & 0& 1-\lambda \end{bmatrix} \begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix}=\begin{bmatrix}0\\ 0\\ 0 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} -0.561553 & 0 & 1\\ -2 & -4.561553 & 1\\ 2 & 0& -3.561553 \end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$ The coefficient matrix is $$\begin{bmatrix} -0.561553 & 0 & 1\\ -2 & -4.561553 & 1\\ 2 & 0& -3.561553 \end{bmatrix} \Rightarrow \begin{bmatrix} -0.561553 & 0 & 1\\ 0 & -4.561553 & -2.561553\\ 0 & 0& 0 \end{bmatrix}$$ $$\Rightarrow \begin{cases}x_1= 1.780776x_3\\ x_2 = -0.5615528x_3\end{cases}$$ where $x_3$ is arbitrary. Thus the eigenvector corresponding to $\lambda_2=4.561553$ is $\begin{bmatrix}1.780776\\ -0.5615528\\ 1 \end{bmatrix}$. For $\lambda_3= 0.4384472$, we have $$\begin{bmatrix} 4-\lambda & 0 & 1\\ -2 & -\lambda & 1\\ 2 & 0& 1-\lambda \end{bmatrix} \begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix}=\begin{bmatrix}0\\ 0\\ 0 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} 3.561553 & 0 & 1\\ -2 & -0.4384472 & 1\\ 2 & 0& 0.5615528 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$ The coefficient matrix is $$\begin{bmatrix} 3.561553 & 0 & 1\\ -2 & -0.4384472 & 1\\ 2 & 0& 0.5615528 \end{bmatrix} \Rightarrow \begin{bmatrix} 3.561553 & 0 & 1\\ 0 & -0.4384472 & 1.561553\\ 0 & 0& 0 \end{bmatrix}$$ $$\Rightarrow \begin{cases}x_1= -0.2807764x_3\\ x_2 = 3.561553x_3\end{cases}$$ where $x_3$ is arbitrary. Thus the eigenvector corresponding to $\lambda_3= 0.4384472$ is $\begin{bmatrix}-0.2807764\\ 3.561553 \\ 1 \end{bmatrix}$.

4. Find the eigenvalues of these matrices by inspection: (A) $\begin{bmatrix}2& 0& 0\\ 0& -3& 0\\ 0& 0& 6\end{bmatrix}$; (B) $\begin{bmatrix}3& 5& 7\\ 0& -2& 1\\ 0& 0& 0\end{bmatrix}$; (C) $\begin{bmatrix}2& 0& 0\\ 3& 5& 0\\ 2& 1& 6\end{bmatrix}$.

Solution:

The eigenvalues of a triangular matrix are the diagonal entries of the matrix. Thus, (A) $\lambda_1=2,\ \lambda_2=-3,\ \lambda_3=6$. (B) $\lambda_1=3,\ \lambda_2=-2,\ \lambda_3=0$. (C) $\lambda_1=2,\ \lambda_2=5,\ \lambda_3=6$.

5. Find the largest eigenvalue in magnitude and its corresponding vector by using the power method $$[A] = \begin{bmatrix}4& 0& 1\\ -2& 0& 1\\ 2& 0& 1 \end{bmatrix}$$ Start with an initial guess of the eigenvector as $\begin{bmatrix}1\\ -0.5\\ 0.5 \end{bmatrix}$.

Solution:

We will use the R script directly,

A = matrix(c(4, -2, 2, 0, 0, 0, 1, 1, 1), ncol = 3)
PowerEigen(A, x0 = c(1, -0.5, -0.5)) Converged after 9 iterations
$value
[1] 4.561553 $vector
[,1]
[1,] 1.0000000
[2,] -0.3153416
[3,] 0.5615528

6. Prove if $\lambda$ is an eigenvalue of $[A]$, then ${1\over\lambda}$ is an eigenvalue of $[A]^{-1}$.

Solution:

We hope to prove that $A^{-1}X={1\over\lambda}X$ where $AX=\lambda X$. $$A^{-1}X=A^{-1}(\lambda \cdot {1\over\lambda}) X = {1\over\lambda} A^{-1}\lambda X = {1\over\lambda} A^{-1}A X = {1\over\lambda}X$$

7. Prove that square matrices $[A]$ and $[A]^{T}$ have the same eigenvalues.

Solution:

We hope to prove that $\det(A-\lambda I) = \det(A^{T}-\lambda I)$, and an important result is $\det(A) = \det\left(A^{T}\right)$ for $A$ is a square matrix. $$\det(A-\lambda I) = \det\left((A-\lambda I)^{T}\right)$$ $$=\det\left(A^{T}-(\lambda I)^{T}\right)$$ $$=\det\left(A^{T}-\lambda I\right)$$

8. Show that $|\det(A)|$ is the product of the absolute values of the eigenvalues of $[A]$.

Solution:

We hope to prove that $$|\det(A)| =\prod_{i=1}^{n}|\lambda_i|$$ where $\lambda_i$ is the eigenvalues of matrix $A$. By the definition we have $$|\det(A-\lambda I)| = |f(\lambda)| =|(\lambda_1-\lambda)(\lambda_2-\lambda)\cdots(\lambda_n-\lambda)| $$ Set $\lambda=0$ (since it is a variable), we have $$|\det(A)| = |\lambda_1\lambda_2\cdots\lambda_n|= \prod_{i=1}^{n}|\lambda_i|$$

9. What are the eigenvalues of the following matrix? $$\begin{bmatrix}5& 6& 17\\ 0& -19& 23\\ 0& 0& 37 \end{bmatrix}$$

Solution:

This is an upper triangular matrix, hence its eigenvalues are the diagonal elements, that is, 5, -19, and 37.

10. If $\begin{bmatrix}-4.5\\ -4\\ 1 \end{bmatrix}$ is an eigenvector of $\begin{bmatrix}8& -4& 2\\ 4& 0& 2\\ 0& -2& -4 \end{bmatrix}$, what is the eigenvalue corresponding to the eigenvector?

Solution:

From the definition we have $AX=\lambda X$, that is $$\begin{bmatrix}8& -4& 2\\ 4& 0& 2\\ 0& -2& -4 \end{bmatrix} \begin{bmatrix}-4.5\\ -4\\ 1 \end{bmatrix} =\lambda \begin{bmatrix}-4.5\\ -4\\ 1 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix}-18\\ -16\\ 4 \end{bmatrix} = \lambda \begin{bmatrix}-4.5\\ -4\\ 1 \end{bmatrix}$$ Hence $\lambda = 4$.

11. The eigenvalues of the following matrix $$\begin{bmatrix}3& 2& 9\\ 7& 5& 13\\ 6& 17& 19\end{bmatrix}$$ are given by solving the cubic equation ( ).

Solution: $$|A-\lambda I| =\det\left( \begin{bmatrix}3-\lambda& 2& 9\\ 7& 5-\lambda& 13\\ 6& 17& 19-\lambda\end{bmatrix}\right)$$ $$= (3-\lambda)\begin{vmatrix}5-\lambda & 13\\ 17 & 19-\lambda\end{vmatrix} - 2\begin{vmatrix}7 & 13\\ 6 & 19-\lambda\end{vmatrix} + 9\begin{vmatrix}7 & 5-\lambda\\ 6 & 17\end{vmatrix}$$ $$= (3-\lambda)\left((5-\lambda)(19-\lambda) - 13\times17\right) - 2\times \left(7(19 - \lambda) - 6 \times 13 \right) + 9 \left(7\times17-6(5-\lambda)\right)$$ $$=\lambda^3 - 27\lambda^2 -122\lambda -313$$

12. The eigenvalues of a $4\times4$ matrix $[A]$ are given as 2, -3, 13, and 7. What is the $|\det(A)|$?

Solution:

Since for a $n\times n$ matrix $$|\det(A)| = \prod_{i=1}^{n}|\lambda_i|$$ Hence we have $$|\det(A)| = |2\times(-3)\times13\times7| = 546$$

13. If one of the eigenvalues of $[A]_{n\times n}$ is zero, it implies ( ).

Solution:

If an eigenvalue is zero, then its determinant must be zero. Furthermore, this means it is a singular matrix (i.e. non-invertible).

14. Given that matrix $$[A] = \begin{bmatrix}8& -4& 2\\ 4& 0& 2\\ 0& -2& -3 \end{bmatrix}$$ has an eigenvalue value of 4 with the corresponding eigenvectors of $[x]=\begin{bmatrix}-4.5\\ -4\\ 1\end{bmatrix}$, then what is the value of $[A]^{5}[X]$?

Solution:

Firstly, we show that $A^{m}X=\lambda^{m}X$, where $\lambda$ is an eigenvalue of $[A]$. By Mathematical Induction, we can read off that $n=1$ is correct.\\ Then suppose that $n=m-1$ is correct, that is, $A^{m-1}X = \lambda^{m-1}X$ holds. For $n=m$, we have $$A^{m}X = AA^{m-1}X = A\lambda^{m-1}X =\lambda^{m-1}AX = \lambda^{m-1}\lambda X =\lambda^{m}X$$ as desired. From this result, we have $$A^5X=\lambda^{5}X = 4^5\begin{bmatrix}-4.5\\ -4\\ 1\end{bmatrix} = \begin{bmatrix}-4608\\ -4096\\ 1024\end{bmatrix}$$

A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 2. Vectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 1. Introduction

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. cookie记住密码功能

    很多门户网站都提供了记住密码功能,虽然现在的浏览器都已经提供了相应的记住密码功能 效果就是你每次进入登录页面后就不需要再进行用户名和密码的输入: 记住密码功能基本都是使用cookie来进行实现的,因此 ...

  2. Jenkins进阶系列之——18Jenkins语言本地化

    在Jenkins中,英语一大片,看着各种蛋疼.非常高兴的是,Jenkins作为一个主流流行的持续构建工具,提供了一个本地化语言的配置界面. 你可以找到它,在Jenkins每页的左下角.如下图: 点击帮 ...

  3. [BZOJ3142][HNOI2013]数列(组合)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3142 分析: 考虑差值序列a1,a2,...,ak-1 那么对于一个确定的差值序列,对 ...

  4. 用matlab实现同一个序列重复N倍

    同一个序列 重复N倍 怎么用matlab实现 可以使用repmat函数 repmat(A, 1, 3) 其中A即为复制的矩阵,1为纵向复制的次数,3即为横向复制的次数.

  5. java list随机打乱

    java list随机打乱package arrlist; import java.util.ArrayList; import java.util.Collections; import java. ...

  6. CSS3属性border-radius绘制多种多样的图形

    border-radius,国内翻译成圆角,你可能以为这个属性就是用来画圆角,没错,但是除此之外,它还可以做点别的事情.radius其实指的是边框所在圆的半径,这个CSS3属性不仅能够创建圆角,还可以 ...

  7. xshell4|5远程连接工具

    志同道合,方能谈天说地! 对比其他的工具,对于功能来说xshell是比较厉害的.有能力的可以支持正版! Xshell4 链接: http://pan.baidu.com/s/1jHAgboa 密码: ...

  8. windows server2008 r2 下启用 sqlserver 2008的远程连接

    首先说明,本文转自互联网. TMD 花了二天,终于找到怎么开启这个远程连接了.....娘的,累死了,写下来,希望能帮助同胞们... 用win server 2008 r2 和sql server 20 ...

  9. AngularJS 日期转换字符串

    日期转换成字符串的办法有很多种,其中最简单的方法是 使用AngularJS的filter来实现. $filter('date')(date, 'yyyyMM'): $filter('date')(da ...

  10. T3 任职定级面试准备

    山东大学计算机专业本科毕业,工作8年,以前在华为工作,来YY正好1年. 个人心态开放积极,对未知事物好奇心很强,前沿科学.古老宗教皆有涉猎.英语口语能力较强,能和老外流程的交流.技术涉猎广泛,喜好研究 ...