“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第10章课程讲义下载(PDF)

Summary

  • Definition
    If $[A]$ is a $n\times n$ matrix, then $[X]\neq \vec0$ is an eigenvector of $[A]$ if $$[A][X] = \lambda[X]$$ where $\lambda$ is a scalar and $[X]\neq0$.
    The scalar $\lambda$ is called the eigenvalue of $[A]$ and $[X]$ is called the eigenvector corresponding to the eigenvalue $\lambda$.
  • Finding eigenvalue and eigenvector
    • To find the eigenvalues of a $n\times n$ matrix $[A]$, we have $$AX=\lambda X$$ $$\Rightarrow AX-\lambda X=0$$ $$\Rightarrow (A-\lambda I)X=0$$ For the above set of equations to have a non-zero solution $$\det(A-\lambda I) = 0$$ The above equation is called the characteristic equation of $[A]$, which gives $$\lambda^n + c_1\lambda^{n-1} + \cdots + c_n=0$$ Hence this polynomial has $n$ roots.
    • For example, finding the eigenvalues of the matrix $$[A] = \begin{bmatrix}3& -1.5\\ -0.75& 0.75 \end{bmatrix}$$ We have $$A-\lambda I = \begin{bmatrix}3 - \lambda & -1.5\\ -0.75& 0.75 - \lambda \end{bmatrix}$$ $$\det(A - \lambda I) = (3-\lambda)(0.75-\lambda) - (-0.75)(-1.5)$$ $$\Rightarrow \lambda^2-3.75\lambda + 1.125 =0$$ $$\Rightarrow \lambda = {3.75\pm\sqrt{{3.75}^{2} - 4.5}\over2} = 3.421165,\ 0.3288354$$ That is, the eigenvalues are 3.421165 and 0.3288354.
    • To find the eigenvectors of the above matrix $[A]$. Let $[X] = \begin{bmatrix}x_1 \\ x_2\end{bmatrix}$ and we already have $\lambda_1 = 3.421165$ and $\lambda_2 = 0.3288354$.
      When $\lambda = 3.421165$, from the definition we have $$(A-\lambda I)X=0$$ $$\Rightarrow \left(\begin{bmatrix}3& -1.5\\ -0.75& 0.75 \end{bmatrix} - \begin{bmatrix}3.421165& 0\\ 0& 3.421165 \end{bmatrix} \right) \begin{bmatrix}x_1 \\ x_2\end{bmatrix} = 0$$ $$\Rightarrow \begin{bmatrix}-0.421165& -1.5\\ -0.75& -2.671165 \end{bmatrix} \begin{bmatrix}x_1 \\ x_2\end{bmatrix} = \begin{bmatrix}0 \\ 0\end{bmatrix}$$ $$\Rightarrow -0.421165x_1 -1.5x_2 = 0 \Rightarrow x_2 = -0.2807767x_1$$ that is, $$[X] = \begin{bmatrix}x_1\\ -0.2807767x_1\end{bmatrix} = x_1\begin{bmatrix}1 \\ -0.2807767\end{bmatrix}$$ Hence the eigenvector corresponding to $\lambda_1 = 3.421165$ is $$\begin{bmatrix}1 \\ -0.2807767\end{bmatrix}$$ Similarly, we have calculate the eigenvector corresponding to $\lambda_2 = 0.3288354$: $$ \left(\begin{bmatrix}3& -1.5\\ -0.75& 0.75 \end{bmatrix} - \begin{bmatrix}0.3288354& 0\\ 0& 0.3288354 \end{bmatrix} \right) \begin{bmatrix}x_1 \\ x_2\end{bmatrix} = 0$$ $$\Rightarrow \begin{bmatrix}2.671165& -1.5\\ -0.75& 0.4211646 \end{bmatrix} \begin{bmatrix}x_1 \\ x_2\end{bmatrix} = \begin{bmatrix}0 \\ 0\end{bmatrix}$$ $$\Rightarrow 2.671165x_1 -1.5x_2 = 0 \Rightarrow x_2 = 1.780776x_1$$ that is, $$[X] = \begin{bmatrix}x_1\\ 1.780776x_1\end{bmatrix} = x_1\begin{bmatrix}1 \\ 1.780776\end{bmatrix}$$ Hence the eigenvector corresponding to $\lambda_1 = 0.3288354$ is $$\begin{bmatrix}1 \\ 1.780776\end{bmatrix}$$
  • Some related theorems
    • If $[A]$ is a $n\times n$ triangular matrix - upper triangular, lower triangular and diagonal, the eigenvalues of $[A]$ are the diagonal entries of $[A]$.
    • $\lambda = 0$ is an eigenvalue of $[A]$ if $[A]$ is a singular (non-invertible) matrix.
    • $[A]$ and $[A]^{T}$ have the same eigenvalues.
    • Eigenvalues of a symmetric matrix are real.
    • Eigenvectors of a symmetric matrix are orthogonal, but only for distinct eigenvalues.
    • $|\det(A)|$ is the product of the absolute values of the eigenvalues of $[A]$.
  • Power Method
    • One of the most common methods used for finding eigenvalues and eigenvectors is the power method. It is used to find the largest eigenvalue in an absolute sense. Note that if this largest eigenvalues is repeated, this method will not work. Also this eigenvalue needs to be distinct.
    • The method is as follows:
      1. Assume a guess $X^{(0)}$ for the eigenvector in $$AX=\lambda X$$ equation. One of the entries of $X^{(0)}$ needs to be unity.
      2. Find $$Y^{(1)} = AX^{(0)}$$
      3. Scale $Y^{(1)}$ so that the chosen unity component remains unity. $$Y^{(1)} = \lambda^{(1)}X^{(1)}$$
      4. Repeat steps 2 and 3 with $X=X^{(1)}$ to get $X^{(2)}$.
      5. Repeat steps 2 and 3 until the value of the eigenvalue converges.
    • For example, using the power method, find the largest eigenvalue and the corresponding eigenvectors of $$[A] = \begin{bmatrix}1.5& 0& 1\\ -0.5& 0.5& -0.5\\ -0.5& 0& 0 \end{bmatrix}$$ given with the initial guess $\begin{bmatrix}1\\ 1\\ 1 \end{bmatrix}$.
      From the algorithm, we have $$AX^{(0)} = \begin{bmatrix}1.5& 0& 1\\ -0.5& 0.5& -0.5\\ -0.5& 0& 0 \end{bmatrix} \begin{bmatrix}1\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix}2.5\\ -0.5\\ -0.5 \end{bmatrix}$$ $$\Rightarrow Y^{(1)} = 2.5\begin{bmatrix}1\\ -0.2\\ -0.2 \end{bmatrix} $$ so $\lambda^{(1)} = 2.5$ and $X^{(1)} = \begin{bmatrix}1\\ -0.2\\ -0.2 \end{bmatrix}$. Note that we choose the first element of $X^{(0)}$ to be unity. Then $$AX^{(1)} = \begin{bmatrix}1.5& 0& 1\\ -0.5& 0.5& -0.5\\ -0.5& 0& 0 \end{bmatrix} \begin{bmatrix}1\\ -0.2\\ -0.2 \end{bmatrix} = \begin{bmatrix}1.3\\ -0.5\\ -0.5 \end{bmatrix}$$ $$\Rightarrow Y^{(2)} = 1.3\begin{bmatrix}1\\ -0.3846\\ -0.3846 \end{bmatrix}$$ so $\lambda^{(2)} = 1.3$ and $X^{(2)} = \begin{bmatrix}1\\ -0.3846\\ -0.3846 \end{bmatrix}$.
      Thus far, the absolute relative approximate error in the eigenvalues is $$|\varepsilon| = \left|{\lambda^{(2)}-\lambda^{(1)}\over \lambda^{(2)}}\right| = \left|{1.3-2.5\over1.3}\right| = 0.9230769$$ Conducting further iterations, the eigenvalue after 5 iterations is 1.02459 and its absolute relative approximate error is 0.012441.
      The exact value of the eigenvalue is $\lambda = 1$ and the corresponding eigenvector is $$X=\begin{bmatrix}1\\-0.5\\-0.5 \end{bmatrix}$$
    • R code

      This function includes 4 parameters:

      • A is the target matrix;
      • x0 is the initial guess which is a vector;
      • eps is the tolerance of the error which can be modified;
      • maxit is the maximum number of iterations in the process.

      We can calculate the previous example by using this script:

      A = matrix(c(1.5, -0.5, -0.5, 0, 0.5, 0, 1, -0.5, 0), ncol = 3)
      PowerEigen(A, x0 = c(1, 1, 1))
      Converged after 23 iterations
      $value
      [1] 1
      $vector
      [,1]
      [1,] 1.0
      [2,] -0.5
      [3,] -0.5

Selected Problems

1. The eigenvalues $\lambda$ of matrix $[A]$ are found by solving the equation ( ).

Solution: $$|A-\lambda I| = 0$$

2. Find the eigenvalues and eigenvectors of $$[A] = \begin{bmatrix} 10& 9\\ 2& 3\end{bmatrix}$$ using the determinant method.

Solution: $$|A-\lambda I| = 0$$ $$\Rightarrow \det\left(\begin{bmatrix} 10-\lambda & 9\\ 2 & 3-\lambda\end{bmatrix}\right) = 0$$ $$\Rightarrow (10-\lambda)(3-\lambda) - 18=0$$ $$\Rightarrow \lambda^2 - 13\lambda +12 =0$$ $$\Rightarrow \lambda_1=1,\ \lambda_2=12$$ For $\lambda_1=1$, we have $$\begin{bmatrix} 10-\lambda & 9\\ 2 & 3-\lambda\end{bmatrix} \begin{bmatrix}x_1 \\ x_2\end{bmatrix} =\begin{bmatrix} 0\\ 0\end{bmatrix} $$ $$\Rightarrow \begin{bmatrix} 9 & 9\\ 2 & 2\end{bmatrix}\begin{bmatrix}x_1 \\ x_2\end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$ $$\Rightarrow x_2 =-x_1$$ $$\Rightarrow X=\begin{bmatrix}x_1\\ -x_1 \end{bmatrix} = x_1\begin{bmatrix} 1\\ -1\end{bmatrix}$$ Thus the eigenvector corresponding to $\lambda_1=1$ is $\begin{bmatrix} 1\\ -1\end{bmatrix}$. Similarly, we can find the second eigenvector corresponding to $\lambda_2=12$: $$\begin{bmatrix} 10-\lambda & 9\\ 2 & 3-\lambda\end{bmatrix} \begin{bmatrix}x_1 \\ x_2\end{bmatrix} =\begin{bmatrix} 0\\ 0\end{bmatrix} $$ $$\Rightarrow \begin{bmatrix} -2 & 9\\ 2 & -9\end{bmatrix}\begin{bmatrix}x_1 \\ x_2\end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$ $$\Rightarrow -2x_1+9x_2 = 0 \Rightarrow x_2 = {2\over9}x_1$$ $$\Rightarrow X=\begin{bmatrix}x_1\\ {2\over9}x_1 \end{bmatrix} = x_1\begin{bmatrix} 1\\ {2\over9}\end{bmatrix} \Rightarrow \begin{bmatrix} 9\\ 2\end{bmatrix}$$ Thus the eigenvector corresponding to $\lambda_2=12$ is $\begin{bmatrix} 9\\ 2\end{bmatrix}$.

3. Find the eigenvalues and eigenvectors of $$[A] = \begin{bmatrix}4& 0& 1\\ -2& 0& 1\\ 2& 0& 1\end{bmatrix}$$ using the determinant method.

Solution:

First of all, we can read off that $\lambda = 0$ is an eigenvalue of this matrix since it is singular. Then from the definition we have $$|A-\lambda I| = 0$$ $$\Rightarrow \det\left( \begin{bmatrix} 4-\lambda & 0 & 1\\ -2 & -\lambda & 1\\ 2 & 0& 1-\lambda \end{bmatrix}\right) = 0$$ $$\Rightarrow (4-\lambda)\left[(-\lambda)(1-\lambda) - 0\right]+\left[1\cdot(0+2\lambda)\right] =0$$ $$\Rightarrow (4-\lambda)(\lambda^2-\lambda) +2\lambda= 0$$ $$\Rightarrow \lambda(-\lambda^2+5\lambda-4+2) =0$$ $$\Rightarrow \lambda(\lambda^2-5\lambda+2) =0$$ $$\Rightarrow \lambda_1=0,\ \lambda_2 = 4.561553,\ \lambda_3=0.4384472.$$ For $\lambda_1 =0$, we have $$\begin{bmatrix} 4-\lambda & 0 & 1\\ -2 & -\lambda & 1\\ 2 & 0& 1-\lambda \end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix}=\begin{bmatrix}0\\ 0\\ 0 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} 4 & 0 & 1\\ -2 & 0 & 1\\ 2 & 0& 1 \end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$ The coefficient matrix is $$\begin{bmatrix} 4& 0& 1\\ -2& 0& 1\\ 2& 0& 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 0& 0& 3\\ -2& 0& 1\\ 0& 0& 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 0& 0& 0\\ -2& 0& 0\\ 0& 0& 2 \end{bmatrix}$$ that is, $x_1=x_3=0$ and $x_2$ is arbitrary. Hence the eigenvector corresponding to $\lambda_1=0$ is $\begin{bmatrix}0 \\ 1\\ 0 \end{bmatrix}$. For $\lambda_2= 4.561553$, we have $$\begin{bmatrix} 4-\lambda & 0 & 1\\ -2 & -\lambda & 1\\ 2 & 0& 1-\lambda \end{bmatrix} \begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix}=\begin{bmatrix}0\\ 0\\ 0 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} -0.561553 & 0 & 1\\ -2 & -4.561553 & 1\\ 2 & 0& -3.561553 \end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$ The coefficient matrix is $$\begin{bmatrix} -0.561553 & 0 & 1\\ -2 & -4.561553 & 1\\ 2 & 0& -3.561553 \end{bmatrix} \Rightarrow \begin{bmatrix} -0.561553 & 0 & 1\\ 0 & -4.561553 & -2.561553\\ 0 & 0& 0 \end{bmatrix}$$ $$\Rightarrow \begin{cases}x_1= 1.780776x_3\\ x_2 = -0.5615528x_3\end{cases}$$ where $x_3$ is arbitrary. Thus the eigenvector corresponding to $\lambda_2=4.561553$ is $\begin{bmatrix}1.780776\\ -0.5615528\\ 1 \end{bmatrix}$. For $\lambda_3= 0.4384472$, we have $$\begin{bmatrix} 4-\lambda & 0 & 1\\ -2 & -\lambda & 1\\ 2 & 0& 1-\lambda \end{bmatrix} \begin{bmatrix}x_1\\ x_2\\ x_3 \end{bmatrix}=\begin{bmatrix}0\\ 0\\ 0 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix} 3.561553 & 0 & 1\\ -2 & -0.4384472 & 1\\ 2 & 0& 0.5615528 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$ The coefficient matrix is $$\begin{bmatrix} 3.561553 & 0 & 1\\ -2 & -0.4384472 & 1\\ 2 & 0& 0.5615528 \end{bmatrix} \Rightarrow \begin{bmatrix} 3.561553 & 0 & 1\\ 0 & -0.4384472 & 1.561553\\ 0 & 0& 0 \end{bmatrix}$$ $$\Rightarrow \begin{cases}x_1= -0.2807764x_3\\ x_2 = 3.561553x_3\end{cases}$$ where $x_3$ is arbitrary. Thus the eigenvector corresponding to $\lambda_3= 0.4384472$ is $\begin{bmatrix}-0.2807764\\ 3.561553 \\ 1 \end{bmatrix}$.

4. Find the eigenvalues of these matrices by inspection: (A) $\begin{bmatrix}2& 0& 0\\ 0& -3& 0\\ 0& 0& 6\end{bmatrix}$; (B) $\begin{bmatrix}3& 5& 7\\ 0& -2& 1\\ 0& 0& 0\end{bmatrix}$; (C) $\begin{bmatrix}2& 0& 0\\ 3& 5& 0\\ 2& 1& 6\end{bmatrix}$.

Solution:

The eigenvalues of a triangular matrix are the diagonal entries of the matrix. Thus, (A) $\lambda_1=2,\ \lambda_2=-3,\ \lambda_3=6$. (B) $\lambda_1=3,\ \lambda_2=-2,\ \lambda_3=0$. (C) $\lambda_1=2,\ \lambda_2=5,\ \lambda_3=6$.

5. Find the largest eigenvalue in magnitude and its corresponding vector by using the power method $$[A] = \begin{bmatrix}4& 0& 1\\ -2& 0& 1\\ 2& 0& 1 \end{bmatrix}$$ Start with an initial guess of the eigenvector as $\begin{bmatrix}1\\ -0.5\\ 0.5 \end{bmatrix}$.

Solution:

We will use the R script directly,

A = matrix(c(4, -2, 2, 0, 0, 0, 1, 1, 1), ncol = 3)
PowerEigen(A, x0 = c(1, -0.5, -0.5)) Converged after 9 iterations
$value
[1] 4.561553 $vector
[,1]
[1,] 1.0000000
[2,] -0.3153416
[3,] 0.5615528

6. Prove if $\lambda$ is an eigenvalue of $[A]$, then ${1\over\lambda}$ is an eigenvalue of $[A]^{-1}$.

Solution:

We hope to prove that $A^{-1}X={1\over\lambda}X$ where $AX=\lambda X$. $$A^{-1}X=A^{-1}(\lambda \cdot {1\over\lambda}) X = {1\over\lambda} A^{-1}\lambda X = {1\over\lambda} A^{-1}A X = {1\over\lambda}X$$

7. Prove that square matrices $[A]$ and $[A]^{T}$ have the same eigenvalues.

Solution:

We hope to prove that $\det(A-\lambda I) = \det(A^{T}-\lambda I)$, and an important result is $\det(A) = \det\left(A^{T}\right)$ for $A$ is a square matrix. $$\det(A-\lambda I) = \det\left((A-\lambda I)^{T}\right)$$ $$=\det\left(A^{T}-(\lambda I)^{T}\right)$$ $$=\det\left(A^{T}-\lambda I\right)$$

8. Show that $|\det(A)|$ is the product of the absolute values of the eigenvalues of $[A]$.

Solution:

We hope to prove that $$|\det(A)| =\prod_{i=1}^{n}|\lambda_i|$$ where $\lambda_i$ is the eigenvalues of matrix $A$. By the definition we have $$|\det(A-\lambda I)| = |f(\lambda)| =|(\lambda_1-\lambda)(\lambda_2-\lambda)\cdots(\lambda_n-\lambda)| $$ Set $\lambda=0$ (since it is a variable), we have $$|\det(A)| = |\lambda_1\lambda_2\cdots\lambda_n|= \prod_{i=1}^{n}|\lambda_i|$$

9. What are the eigenvalues of the following matrix? $$\begin{bmatrix}5& 6& 17\\ 0& -19& 23\\ 0& 0& 37 \end{bmatrix}$$

Solution:

This is an upper triangular matrix, hence its eigenvalues are the diagonal elements, that is, 5, -19, and 37.

10. If $\begin{bmatrix}-4.5\\ -4\\ 1 \end{bmatrix}$ is an eigenvector of $\begin{bmatrix}8& -4& 2\\ 4& 0& 2\\ 0& -2& -4 \end{bmatrix}$, what is the eigenvalue corresponding to the eigenvector?

Solution:

From the definition we have $AX=\lambda X$, that is $$\begin{bmatrix}8& -4& 2\\ 4& 0& 2\\ 0& -2& -4 \end{bmatrix} \begin{bmatrix}-4.5\\ -4\\ 1 \end{bmatrix} =\lambda \begin{bmatrix}-4.5\\ -4\\ 1 \end{bmatrix}$$ $$\Rightarrow \begin{bmatrix}-18\\ -16\\ 4 \end{bmatrix} = \lambda \begin{bmatrix}-4.5\\ -4\\ 1 \end{bmatrix}$$ Hence $\lambda = 4$.

11. The eigenvalues of the following matrix $$\begin{bmatrix}3& 2& 9\\ 7& 5& 13\\ 6& 17& 19\end{bmatrix}$$ are given by solving the cubic equation ( ).

Solution: $$|A-\lambda I| =\det\left( \begin{bmatrix}3-\lambda& 2& 9\\ 7& 5-\lambda& 13\\ 6& 17& 19-\lambda\end{bmatrix}\right)$$ $$= (3-\lambda)\begin{vmatrix}5-\lambda & 13\\ 17 & 19-\lambda\end{vmatrix} - 2\begin{vmatrix}7 & 13\\ 6 & 19-\lambda\end{vmatrix} + 9\begin{vmatrix}7 & 5-\lambda\\ 6 & 17\end{vmatrix}$$ $$= (3-\lambda)\left((5-\lambda)(19-\lambda) - 13\times17\right) - 2\times \left(7(19 - \lambda) - 6 \times 13 \right) + 9 \left(7\times17-6(5-\lambda)\right)$$ $$=\lambda^3 - 27\lambda^2 -122\lambda -313$$

12. The eigenvalues of a $4\times4$ matrix $[A]$ are given as 2, -3, 13, and 7. What is the $|\det(A)|$?

Solution:

Since for a $n\times n$ matrix $$|\det(A)| = \prod_{i=1}^{n}|\lambda_i|$$ Hence we have $$|\det(A)| = |2\times(-3)\times13\times7| = 546$$

13. If one of the eigenvalues of $[A]_{n\times n}$ is zero, it implies ( ).

Solution:

If an eigenvalue is zero, then its determinant must be zero. Furthermore, this means it is a singular matrix (i.e. non-invertible).

14. Given that matrix $$[A] = \begin{bmatrix}8& -4& 2\\ 4& 0& 2\\ 0& -2& -3 \end{bmatrix}$$ has an eigenvalue value of 4 with the corresponding eigenvectors of $[x]=\begin{bmatrix}-4.5\\ -4\\ 1\end{bmatrix}$, then what is the value of $[A]^{5}[X]$?

Solution:

Firstly, we show that $A^{m}X=\lambda^{m}X$, where $\lambda$ is an eigenvalue of $[A]$. By Mathematical Induction, we can read off that $n=1$ is correct.\\ Then suppose that $n=m-1$ is correct, that is, $A^{m-1}X = \lambda^{m-1}X$ holds. For $n=m$, we have $$A^{m}X = AA^{m-1}X = A\lambda^{m-1}X =\lambda^{m-1}AX = \lambda^{m-1}\lambda X =\lambda^{m}X$$ as desired. From this result, we have $$A^5X=\lambda^{5}X = 4^5\begin{bmatrix}-4.5\\ -4\\ 1\end{bmatrix} = \begin{bmatrix}-4608\\ -4096\\ 1024\end{bmatrix}$$

A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 2. Vectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 1. Introduction

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. express:webpack dev-server开发中如何调用后端服务器的接口?

    开发环境:     前端:webpack + vue + vue-resource,基于如下模板创建的开发环境: https://github.com/vuejs-templates/webpack  ...

  2. canvas drag 实现拖拽拼图小游戏

    博主一直心心念念想做一个小游戏-  前端时间终于做了一个小游戏,直到现在才来总结,哈哈- 以后要勤奋点更新博客! 实现原理 1.如何切图? 用之前的方法就是使用photoshop将图片切成相应大小的图 ...

  3. favicon.ico文件简介

    本地调试时,控制台经常会打印如下的错误(对 favicon.ico 的请求在 chrome 调试面板下不可见,可在抓包工具,比如 Fiddler 中看到): favicon.ico 是啥?看下面这张图 ...

  4. canvas api

    基本骨骼 <canvas id="canvas" width=1000 height=1000 style="border: 1px black dotted&qu ...

  5. [BZOJ2152]聪聪可可(点分治)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2152 分析:裸的点分治,对于每课树,记录t[0],t[1],t[2]表示到当前根节点距 ...

  6. [BZOJ 1997][HNOI2010]Planar(2-SAT)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1997 分析: 考虑每条边是在圈子里面还是圈子外面 所以就变成了2-SAT判定问题了= ...

  7. mysql创建触发器

    触发器语句只有一句话 可以省略begin和end CREATE trigger `do_praise` after insert on praise for each row update post ...

  8. 阿里巴巴高新能数据源com.alibaba.druid.pool.DruidDataSource的jar包配置

    aspectjweaver-1.7.4.jar druid-0.2.9.jar 两个包,用于提供com.alibaba.druid.pool.DruidDataSource

  9. Win7 64bit下32bit的 ODBC 数据源问题

    win764位有数据源,但是如果我们在win7 64bit中使用32位的数据源的时候,我们就需要对其进行配置,很有趣的是,64为的数据源我们可以在控制面板——系统与安全——管理工具——数据源,进入可对 ...

  10. 17-tail 简明笔记

    显示文件的最后一部分(尾部) tail [options] [file-list] 参数 file-list是tail要显示的文件的路径名列表.当制定多个文件时,tail在显示每个文件的内容之前先显示 ...