UVa 10870 & 矩阵快速幂
题意:
求一个递推式(不好怎么概括。。)的函数的值。
即 f(n)=a1f(n-1)+a2f(n-2)+...+adf(n-d);
SOL:
根据矩阵乘法的定义我们可以很容易地构造出矩阵,每次乘法即可求出下一位f(n)的值并在距震中保存f(n)-----f(n-d+1)。
像我这种傻逼看错好几次运算法则的人 = =
第一道矩乘对着老人家模板打得几乎一模一样-----只是觉得他的写法比较优雅= =(虽然我感觉那么多memcpy会不会让常数很大。。。)
CODE:
/*==========================================================================
# Last modified: 2016-03-03 21:11
# Filename: uva10870.cpp
# Description:
==========================================================================*/
#define me AcrossTheSky
#include <cstdio>
#include <cmath>
#include <ctime>
#include <string>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm> #include <set>
#include <map>
#include <stack>
#include <queue>
#include <vector> #define lowbit(x) (x)&(-x)
#define FOR(i,a,b) for((i)=(a);(i)<=(b);(i)++)
#define FORP(i,a,b) for(int i=(a);i<=(b);i++)
#define FORM(i,a,b) for(int i=(a);i>=(b);i--)
#define ls(a,b) (((a)+(b)) << 1)
#define rs(a,b) (((a)+(b)) >> 1)
#define getlc(a) ch[(a)][0]
#define getrc(a) ch[(a)][1] #define maxn 100
#define maxm 100000
#define pi 3.1415926535898
#define _e 2.718281828459
#define INF 1070000000
using namespace std;
typedef long long ll;
typedef unsigned long long ull; template<class T> inline
void read(T& num) {
bool start=false,neg=false;
char c;
num=0;
while((c=getchar())!=EOF) {
if(c=='-') start=neg=true;
else if(c>='0' && c<='9') {
start=true;
num=num*10+c-'0';
} else if(start) break;
}
if(neg) num=-num;
}
/*==================split line==================*/
typedef long long Matrix[maxn][maxn];
typedef long long Vector[maxn];
int n,m,d,sz;
void matrix_mul(Matrix A,Matrix B,Matrix res){
Matrix C;
memset(C,0,sizeof(C));
FORP(i,0,sz-1)
FORP(j,0,sz-1)
FORP(k,0,sz-1)C[i][j]=(C[i][j]+A[i][k]*B[k][j])%m;
memcpy(res,C,sizeof(C));
}
void matrix_pow(Matrix A,int n,Matrix res){
Matrix a,r;
memcpy(a,A,sizeof(a));
memset(r,0,sizeof(r));
FORP(i,0,sz-1) r[i][i]=1;
while (n){
if (n&1) matrix_mul(r,a,r);
n >>= 1;
matrix_mul(a,a,a);
}
memcpy(res,r,sizeof(r));
}
void transform(Vector d,Matrix A,Vector res){
Vector r;
memset(r,0,sizeof(r));
FORP(i,0,sz-1)
FORP(j,0,sz-1) r[j]=(r[j]+d[i]*A[i][j])%m;
memcpy(res,r,sizeof(r));
}
int main(){
while (scanf("%d%d%d",&d,&n,&m)!=EOF){
if (d==0 && n==0 && m==0) return 0;
Matrix A;
Vector a,f;
FORP(i,0,d-1) { read(a[i]); a[i]%=m;}
FORM(i,d-1,0) { read(f[i]); f[i]%=m;}
memset(A,0,sizeof(A));
FORP(i,0,d-1) A[i][0]=a[i];
FORP(i,1,d-1) A[i-1][i]=1; sz=d;
matrix_pow(A,n-d,A);
transform(f,A,f);
cout << f[0] << endl;
}
}
UVa 10870 & 矩阵快速幂的更多相关文章
- UVa 10870 (矩阵快速幂) Recurrences
给出一个d阶线性递推关系,求f(n) mod m的值. , 求出An-dv0,该向量的最后一个元素就是所求. #include <iostream> #include <cstdio ...
- UVA - 11149 (矩阵快速幂+倍增法)
第一道矩阵快速幂的题:模板题: #include<stack> #include<queue> #include<cmath> #include<cstdio ...
- UVa 10870 Recurrences (矩阵快速幂)
题意:给定 d , n , m (1<=d<=15,1<=n<=2^31-1,1<=m<=46340).a1 , a2 ..... ad.f(1), f(2) .. ...
- UVA - 10870 Recurrences 【矩阵快速幂】
题目链接 https://odzkskevi.qnssl.com/d474b5dd1cebae1d617e6c48f5aca598?v=1524578553 题意 给出一个表达式 算法 f(n) 思路 ...
- POJ-3070Fibonacci(矩阵快速幂求Fibonacci数列) uva 10689 Yet another Number Sequence【矩阵快速幂】
典型的两道矩阵快速幂求斐波那契数列 POJ 那是 默认a=0,b=1 UVA 一般情况是 斐波那契f(n)=(n-1)次幂情况下的(ans.m[0][0] * b + ans.m[0][1] * a) ...
- uva 10518 - How Many Calls?(矩阵快速幂)
题目链接:uva 10518 - How Many Calls? 公式f(n) = 2 * F(n) - 1, F(n)用矩阵快速幂求. #include <stdio.h> #inclu ...
- Tribonacci UVA - 12470 (简单的斐波拉契数列)(矩阵快速幂)
题意:a1=0;a2=1;a3=2; a(n)=a(n-1)+a(n-2)+a(n-3); 求a(n) 思路:矩阵快速幂 #include<cstdio> #include<cst ...
- UVA - 10689 Yet another Number Sequence 矩阵快速幂
Yet another Number Sequence Let’s define another number sequence, given by the foll ...
- UVA - 10229 Modular Fibonacci 矩阵快速幂
Modular Fibonacci The Fibonacci numbers (0, 1, 1, 2, 3, 5, 8, 13, 21, 3 ...
随机推荐
- 环信SDK集成
利用环信SDK可以实现即时通讯,但在集成的过程中碰到了不少的坑. 注意 选择项目路径,这里以最新版环信demo为例 注意:环信的ChatDemoUI这个demo里边因为研发的同事为了照顾老版本的And ...
- DOM - EventListener 句柄操作
<!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" c ...
- MVC基础知识 – 2.新语法
1.自动属性 Auto-Implemented Properties 2.隐式类型 var 3.参数默认值 和 命名参数 4.对象初始化器 与 集合初始化器 { } 5.匿名类 & 匿名方法 ...
- poj 2001:Shortest Prefixes(字典树,经典题,求最短唯一前缀)
Shortest Prefixes Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 12731 Accepted: 544 ...
- [LeetCode] Maximal Rectangle
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and ...
- Java获取当前时间年月日、时间格式化打印、字符串转日期
package com.sysc.simple; import java.text.ParseException; import java.text.SimpleDateFormat; import ...
- JS判断输入值是否为正整数
JS中的test是原来是JS中检测字符串中是否存在的一种模式,JS输入值是否为判断正整数代码: <script type=”text/javascript”> function test( ...
- C# Settings使用小结
本篇博客将介绍C#中Settings的使用. 首先介绍一个桌面程序中的例子,当我们新安装一个软件,软件启动后会有例如新手指导等窗体弹出来,每次都需要自己去关闭它.当然这些软件都会提供例如不再显示等功能 ...
- hdu 1517 博弈 **
博弈题: 题意:2 个人玩游戏,从 1 开始,轮流对数进行累乘,直到超过一个指定的值. 解题思路:如果输入是 2 ~ 9 ,因为Stan 是先手,所以Stan 必胜如果输入是 10~18 ,因为Oll ...
- hdu 4756 MST+树形dp ****
题意:给你n(n = 1000)个二维点,第一个点是power plant,还有n - 1个点是dormitories.然后现在知道有一条寝室到寝室的边是不能连的,但是我们不知道是哪条边,问这种情况下 ...