【BZOJ-1179】Atm Tarjan + SPFA
1179: [Apio2009]Atm
Time Limit: 15 Sec Memory Limit: 162 MB
Submit:
2407 Solved: 993
[Submit][Status][Discuss]
Description
Input
第一行包含两个整数N、M。N表示路口的个数,M表示道路条数。接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号。接下来N行,每行一个整数,按顺序表示每个路口处的ATM机中的钱数。接下来一行包含两个整数S、P,S表示市中心的编号,也就是出发的路口。P表示酒吧数目。接下来的一行中有P个整数,表示P个有酒吧的路口的编号
Output
输出一个整数,表示Banditji从市中心开始到某个酒吧结束所能抢劫的最多的现金总数。
Sample Input
1 2
2 3
3 5
2 4
4
1
2 6
6 5
10
12
8
16
1 5
1
4
4
3
5
6
Sample Output
HINT
50%的输入保证N, M<=3000。所有的输入保证N,
M<=500000。每个ATM机中可取的钱数为一个非负整数且不超过4000。输入数据保证你可以从市中心沿着Siruseri的单向的道路到达其中的至少一个酒吧。
Source
Solution
挺不错的结合,挺好实现的
首先题目中有环,很显然换上的都可以取到,但这不符合一般的最短/长路的跑法,所以考虑转化
把图中的环缩成一个点,点权为环上的值总和,对缩出来的点重构图,连边
很显然是个DAG,那么如此这样就可以直接跑了,直接上SPFA跑一遍即可,实际上BFS也可以..
最后枚举所有的酒吧,判断在哪里结束获得最大即可
PS:开始重建图的时候,是在原来的基础上建的,为什么RE成狗?迫使我新开一个重新建...
启发:
有向图出现环,很有可能需要缩成点,这个思想可以应用与最短路,或者网络流上
想题要周到,方便实现的写法,往往最适合
遇到DAG时,尝试利用一下DAG的性质,可能会有奇效
Code
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define maxn 500010
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
int n,m,uu,S,P,ans,val[maxn]; struct Edgenode{int to,next,val;}edge[maxn<<];
int head[maxn<<],cnt=;
void add(int u,int v)
{cnt++;edge[cnt].to=v;edge[cnt].next=head[u];head[u]=cnt;}
struct Roadnode{int to,next;}road[maxn];
int last[maxn],cn=;
void insert(int u,int v)
{cn++;road[cn].to=v;road[cn].next=last[u];last[u]=cn;}
int dfn[maxn],low[maxn],qcnt,stack[maxn],top,num[maxn],belong[maxn],tot,valu[maxn];
bool visit[maxn]; void Tarjan(int x)
{
dfn[x]=low[x]=++tot;
visit[x]=; stack[++top]=x;
for (int i=head[x]; i; i=edge[i].next)
{
if (!dfn[edge[i].to])
{
Tarjan(edge[i].to);
if (low[edge[i].to]<low[x]) low[x]=low[edge[i].to];
}
else
if(visit[edge[i].to] && dfn[edge[i].to]<low[x])
low[x]=dfn[edge[i].to];
}
if (dfn[x]==low[x])
{
qcnt++;
while (x!=uu)
uu=stack[top--],num[qcnt]++,visit[uu]=,belong[uu]=qcnt,valu[qcnt]+=val[uu];
}
}
void rebuild()
{
for (int i=; i<=n; i++)
for (int j=head[i]; j; j=edge[j].next)
if (belong[i]!=belong[edge[j].to])
insert(belong[i],belong[edge[j].to]);
}
#define inf 0x7fffffff
int dis[maxn];
void spfa()
{
queue<int>que; memset(visit,,sizeof(visit));
// for (int i=1; i<=qcnt; i++) dis[i]=-inf;
visit[S]=; dis[S]=valu[S]; que.push(S);
while (!que.empty())
{
int now=que.front(); que.pop(); visit[now]=;
for (int i=last[now]; i; i=road[i].next)
if (dis[road[i].to]<dis[now]+valu[road[i].to])
{
dis[road[i].to]=dis[now]+valu[road[i].to];
if (!visit[road[i].to])
visit[road[i].to]=,que.push(road[i].to);
}
}
}
bool bar[maxn];
int main()
{
n=read(),m=read();
for (int u,v,i=; i<=m; i++) u=read(),v=read(),add(u,v);
for (int i=; i<=n; i++) val[i]=read();
for (int i=; i<=n; i++) if (!dfn[i]) Tarjan(i);
S=read(); S=belong[S]; P=read();
for (int x,i=; i<=P; i++) x=read(),bar[x]=;
rebuild(); spfa();
// for (int i=1; i<=n; i++)
// printf("%d\n",dis[belong[i]]);
for (int i=; i<=n; i++)
if (bar[i]) ans=max(ans,dis[belong[i]]);
printf("%d\n",ans);
return ;
}
似乎是个不错的NOIP难度题?
【BZOJ-1179】Atm Tarjan + SPFA的更多相关文章
- bzoj 1179[Apio2009]Atm (tarjan+spfa)
题目 输入 第一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号.接下来N行,每行一 ...
- BZOJ 1179: [Apio2009]Atm( tarjan + 最短路 )
对于一个强连通分量, 一定是整个走或者不走, 所以tarjan缩点然后跑dijkstra. ------------------------------------------------------ ...
- 【BZOJ 1179】[Apio2009]Atm
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] tarjan强连通缩点一下. 然后把缩点之后,每个点的钱的数累加起来. 然后从S出发 开始一边做bfs一遍做dp. 最后输出有酒吧的 ...
- 【BZOJ 1150】 1150: [CTSC2007]数据备份Backup (贪心+优先队列+双向链表)
1150: [CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设 ...
- Kruskal算法及其类似原理的应用——【BZOJ 3654】tree&&【BZOJ 3624】[Apio2008]免费道路
首先让我们来介绍Krukal算法,他是一种用来求解最小生成树问题的算法,首先把边按边权排序,然后贪心得从最小开始往大里取,只要那个边的两端点暂时还没有在一个联通块里,我们就把他相连,只要这个图里存在最 ...
- 【BZOJ 2957】楼房重建&&Codechef COT5 Count on a Treap&&【NOIP模拟赛】Weed 线段树的分治维护
线段树是一种作用于静态区间上的数据结构,可以高效查询连续区间和单点,类似于一种静态的分治.他最迷人的地方在于“lazy标记”,对于lazy标记一般随我们从父区间进入子区间而下传,最终给到叶子节点,但还 ...
- LCA 【bzoj 4281】 [ONTAK2015]Związek Harcerstwa Bajtockiego
[bzoj 4281] [ONTAK2015]Związek Harcerstwa Bajtockiego Description 给定一棵有n个点的无根树,相邻的点之间的距离为1,一开始你位于m点. ...
- 【BZOJ1179】[Apio2009]Atm (tarjan+SPFA)
显而易见的tarjan+spfa...不解释了 ; type edgetype=record toward,next:longint; end; var edge1,edge2:..maxn] of ...
- BZOJ 1179 [Apio2009]Atm(强连通分量)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1179 [题目大意] 给出一张有向带环点权图,给出一些终点,在路径中同一个点的点权只能累 ...
随机推荐
- sublime自定义快键键不行,
其实sublime自身就有格式化命令,就不再安装插件,位置在[Edit]->[Line]->[Reindent]但这个默认的命令没有快捷键,就重新定义了一下,想用习惯了的eclipse快捷 ...
- IT教程网
这个IT教程网(印度),我认为是最好的.里面的知识基础实用,覆盖面很广,作为IT入门和了解都是极好的. http://www.tutorialspoint.com/
- 将函数传给webworker
var zWorker = function (func,cb){ var node = document.createElement('script'),workerId='worker' + Da ...
- 链路层的简介和MTU
链路层杂谈(凭个人理解瞎说的,欢迎拍砖) 链路层,说白了就是把网络层的IP数据处理一下,加点东西,放到物理层上去. 加的东西:源.目的地址和CRC校验值,有的还有类型这个字段,用来区分协议. ...
- python 二叉树
class Node(object): def __init__(self, data=None, left=None, right=None): self.data = data self.left ...
- ROS(Robot Operating System)常用环境变量介绍
本文简单介绍ROS系统中常用的环境变量用途及设置方式.ROS系统环境中除了必须配置的环境变量以外,其他的也是十分有用,通过修改变量路径,可以设置ROS系统中log文件存放路径,单元测试结果存放路径等. ...
- 翻译qmake文档(三) Creating Project Files
翻译qmake文档 目录 原英文文档:http://qt-project.org/doc/qt-5/qmake-project-files.html 创建项目文件 项目文件包含qmake构建你 ...
- Python2.7-异常和工具
来自<python学习手册第四版>第七部分,而且本书发布的时候3.1还未发布,所以针对本书的一些知识会有些滞后于python的版本,具体更多细节可以参考python的标准手册. 一.异常基 ...
- TensorFlow 源代码初读感受
把自己微博发的文章:http://www.weibo.com/1804230372/En7PdlgLb?from=page_1005051804230372_profile&wvr=6& ...
- .net破解二(修改dll)
多谢大家支持! 昨天说了一下反编译与剥壳(.net破解一(反编译,反混淆-剥壳,工具推荐)),今天就来修改修改dll,为了方便,我自己写一个简单程序用来测试 代码如下: 一个 ConsoleAppli ...