E. George and Cards
 

George is a cat, so he loves playing very much.

Vitaly put n cards in a row in front of George. Each card has one integer written on it. All cards had distinct numbers written on them. Let's number the cards from the left to the right with integers from 1 to n. Then the i-th card from the left contains number pi(1 ≤ pi ≤ n).

Vitaly wants the row to have exactly k cards left. He also wants the i-th card from left to have number bi written on it. Vitaly gave a task to George, to get the required sequence of cards using the remove operation n - k times.

In one remove operation George can choose w (1 ≤ ww is not greater than the current number of cards in the row) contiguous cards (contiguous subsegment of cards). Let's denote the numbers written on these card as x1, x2, ..., xw (from the left to the right). After that, George can remove the card xi, such that xi ≤ xj for each j (1 ≤ j ≤ w). After the described operation George gets w pieces of sausage.

George wondered: what maximum number of pieces of sausage will he get in total if he reaches his goal and acts optimally well? Help George, find an answer to his question!

Input

The first line contains integers n and k (1 ≤ k ≤ n ≤ 106) — the initial and the final number of cards.

The second line contains n distinct space-separated integers p1, p2, ..., pn (1 ≤ pi ≤ n) — the initial row of cards.

The third line contains k space-separated integers b1, b2, ..., bk — the row of cards that you need to get. It is guaranteed that it's possible to obtain the given row by using the remove operation for n - k times.

Output

Print a single integer — the maximum number of pieces of sausage that George can get if he acts optimally well.

Examples
input
3 2
2 1 3
1 3
output
1
 
题意:
  给你n个数只包含1~n
  和一个k,以及k个数
  让你从这n个中删除n-k个数, 余留给定的k个数
  每次删除一个数,你可以选择连续的w个数,表示删除这个w个数中最小的数,同时获得w分数
  问你如何删除 使得最后获得的分数最多,输出分数来
题解:

  也就是尽量重复使用那些必须删除的数

  那么 从小到大删除就好了

  如何计算答案?

  从小到大枚举,

    对于必须保留的数,将其位置插入set

    对于必须删除的数,查找当前数i的位置在set中的前驱后继,表示答案的区间,

      这个区间中可能有些数十被删除了的(比i小)那么 用一个树状数组或者线段树计算区间和即可。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<set>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 1e6+, M = 1e6, mod = 1e9+, inf = 2e9; int n,k,a[N],pos[N],x,vis[N];
LL ans = ;
int C[N];
void update(int x,int c) {
for(int i = x; i < N; i += i&(-i)) C[i] += c;
}
int ask(int x) {
int s = ;
for(int i = x; i; i -= i&(-i)) s+=C[i];
return s;
}
int main() {
scanf("%d%d",&n,&k);
for(int i = ; i <= n; ++i) scanf("%d",&a[i]),pos[a[i]] = i;
for(int i = ; i <= n; ++i) update(i,);
for(int i = ; i <= k; ++i) scanf("%d",&x),vis[x] = ;
set<int > s;
s.insert(),s.insert(n+);
for(int i = ; i <= n; ++i) {
if(!vis[i]) {
int bef = *(--s.lower_bound(pos[i]));
int blc = *(s.lower_bound(pos[i]));
ans += ask(blc-) - ask(bef);
update(pos[i],-);
} else {
s.insert(pos[i]);
}
}
cout<<ans<<endl;
return ;
}

Codeforces Round #227 (Div. 2) E. George and Cards set内二分+树状数组的更多相关文章

  1. Codeforces Round #227 (Div. 2) E. George and Cards 线段树+set

    题目链接: 题目 E. George and Cards time limit per test:2 seconds memory limit per test:256 megabytes 问题描述 ...

  2. Codeforces Round #365 (Div. 2) D - Mishka and Interesting sum(离线树状数组)

    http://codeforces.com/contest/703/problem/D 题意: 给出一行数,有m次查询,每次查询输出区间内出现次数为偶数次的数字的异或和. 思路: 这儿利用一下异或和的 ...

  3. Codeforces Round #261 (Div. 2) D. Pashmak and Parmida's problem (树状数组求逆序数 变形)

    题目链接 题意:给出数组A,定义f(l,r,x)为A[]的下标l到r之间,等于x的元素数.i和j符合f(1,i,a[i])>f(j,n,a[j]),求i和j的种类数. 我们可以用map预处理出  ...

  4. Codeforces Round #263 (Div. 1) C. Appleman and a Sheet of Paper 树状数组暴力更新

    C. Appleman and a Sheet of Paper   Appleman has a very big sheet of paper. This sheet has a form of ...

  5. Codeforces Round #381 (Div. 2) D. Alyona and a tree dfs序+树状数组

    D. Alyona and a tree time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  6. Codeforces Round #590 (Div. 3)【D题:维护26棵树状数组【好题】】

    A题 题意:给你 n 个数 , 你需要改变这些数使得这 n 个数的值相等 , 并且要求改变后所有数的和需大于等于原来的所有数字的和 , 然后输出满足题意且改变后最小的数值. AC代码: #includ ...

  7. Codeforces Round #348 (VK Cup 2016 Round 2, Div. 2 Edition) E. Little Artem and Time Machine 树状数组

    E. Little Artem and Time Machine 题目连接: http://www.codeforces.com/contest/669/problem/E Description L ...

  8. 01背包 Codeforces Round #267 (Div. 2) C. George and Job

    题目传送门 /* 题意:选择k个m长的区间,使得总和最大 01背包:dp[i][j] 表示在i的位置选或不选[i-m+1, i]这个区间,当它是第j个区间. 01背包思想,状态转移方程:dp[i][j ...

  9. Codeforces Round #267 (Div. 2) C. George and Job(DP)补题

    Codeforces Round #267 (Div. 2) C. George and Job题目链接请点击~ The new ITone 6 has been released recently ...

随机推荐

  1. host位置

    windows xp/2003/vista/2008用户HOSTS文件是在“c:\windows\system32\drivers\etc”

  2. Linux下cp -rf总是提示覆盖的解决办法

    通常情况下使用cp -rf进行文件或者文件夹的管理时一般就不再提醒是否覆盖.然而在内网的一台机器上使用cp -rf却提示是否覆盖.难道和常用的命令不同? [root@xxxx test]# cp -r ...

  3. docker进入容器的方式

    通过docker创建守护运行(在使用-d参数时)的容器时,容器启动后会进入后台.用户无法看到容器中的信息.某些时候如果需要进入容器进行操作,有多种方法,包括使用docker attach命令.dock ...

  4. ios coredata NSManagedObject 的 objectID

    要使用这个属性一定要注意先把数据保存下,不然会变化的!就无法通过 - (NSManagedObject*)existingObjectWithID:(NSManagedObjectID*)object ...

  5. 基础02 Java 跨平台原理

    1993 , JAVA初衷: 机顶盒 1994 年互联网刚刚兴起,.(高司令\ 高斯林),改造成了面向互联网的计算机语言.java重要特性之 ------- 跨平台(一次编译,到处运行).平台:操作系 ...

  6. storm单机环境部署

    前面说过storm集群的部署,这篇主要介绍storm单机环境部署,其实他们之间很类似,就是将之前配置文件中所有的集群条目改成本机的地址即可,部署之前应该按前面solr和zookeeper单机环境部署那 ...

  7. selenium处理rich text(富文本框)

    WordPress 的 rich  text 采用js,先让selenium切换到iframe中 driver.switchTo().frame("content_ifr"); 然 ...

  8. SSM 加载配置文件

    配置文件中 <bean id="address" class="org.springframework.beans.factory.config.Propertie ...

  9. 【leetcode】Balanced Binary Tree(middle)

    Given a binary tree, determine if it is height-balanced. For this problem, a height-balanced binary ...

  10. 【linux】ps

    来源:http://blog.chinaunix.net/uid-25681671-id-3201927.html Linux下PS命令详解 要对系统中进程进行监测控制,查看状态,内存,CPU的使用情 ...