[NOIP2014] 提高组 洛谷P2312 解方程
题目描述
已知多项式方程:
a0+a1x+a2x^2+..+anx^n=0
求这个方程在[1, m ] 内的整数解(n 和m 均为正整数)
输入输出格式
输入格式:
输入文件名为equation .in。
输入共n + 2 行。
第一行包含2 个整数n 、m ,每两个整数之间用一个空格隔开。
接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an
输出格式:
输出文件名为equation .out 。
第一行输出方程在[1, m ] 内的整数解的个数。
接下来每行一个整数,按照从小到大的顺序依次输出方程在[1, m ] 内的一个整数解。
输入输出样例
2 10
1
-2
1
1
1
2 10
2
-3
1
2
1
2
2 10
1
3
2
0
说明
30%:0<n<=2,|ai|<=100,an!=0,m<100
50%:0<n<=100,|ai|<=10^100,an!=0,m<100
70%:0<n<=100,|ai|<=10^10000,an!=0,m<10000
100%:0<n<=100,|ai|<=10^10000,an!=0,m<1000000
直接计算无疑是不可能做到的。
将每一项的系数都模一个质数,若一个数是方程的解,那么在模的意义下它也是方程的解(但反过来不一定)。
为了解决这个“不一定”的问题,多选几个质数,若一个数在不同模的意义下都是方程的解,那么它有极大的几率就是原方程的解了。
↑如果素数选得不好,这题还是会WA。
↑所以这是道拼RP的题。
/*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
using namespace std;
const int mod[]={,,,,,,,};
char s[][];
int n,m;
int num[][];
bool solve(int od,int x){
int i,j;
long long tmp=;
long long pw=;
for(i=;i<=n;++i){
// printf("%d %d\n",num[od][i],pw);
if(s[i][]=='-') tmp=(tmp-pw*num[od][i])%mod[od];
else tmp=(tmp+pw*num[od][i])%mod[od];
pw=pw*x%mod[od];
}
while(tmp<) tmp+=mod[od];
if(!tmp)return true;
return false;
}
int res[];
int ans[],act=;
int main(){
int i,j,k;
scanf("%d%d",&n,&m);
for(i=;i<=n;++i)
scanf("%s",s[i]);
int len[];
for(i=;i<=n;++i)len[i]=strlen(s[i]);
for(k=;k<=;++k)
for(i=;i<=n;++i){
for(j=;j<len[i];++j){
if(s[i][j]=='-')continue;
num[k][i]=num[k][i]*+s[i][j]-'';
num[k][i]%=mod[k];
}
}
for(k=;k<=;++k)
for(i=;i<mod[k] && i<=m;++i){
if(!solve(k,i))continue;
++res[i];
for(j=i+mod[k];j<=m;j+=mod[k]){
// if(solve(k,j))
res[j]++;
}
}
for(i=;i<=m;++i)
if(res[i]==)ans[++act]=i;
printf("%d\n",act);
for(i=;i<=act;++i)printf("%d\n",ans[i]);
return ;
}
[NOIP2014] 提高组 洛谷P2312 解方程的更多相关文章
- 洛谷P2312 解方程题解
洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...
- [NOIP2014] 提高组 洛谷P2038 无线网络发射器选址
题目描述 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网. 假设该城市的布局为由严格平行的129 条东西向街道和129 条南北向街道所形成的网格状,并且相邻 ...
- 洛谷 P2312 解方程 解题报告
P2312 解方程 题目描述 已知多项式方程: \(a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\)求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) 均为正整 ...
- 洛谷 P2312 解方程 题解
P2312 解方程 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 [1,m][1,m] 内的整数解(\(n\) 和 \(m\) 均为 ...
- 洛谷P2312 解方程 [noip2014] 数论
正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...
- 洛谷 P2312 解方程
题目 首先,可以确定的是这题的做法就是暴力枚举x,然后去计算方程左边与右边是否相等. 但是noip的D2T3怎么会真的这么简单呢?卡常卡的真是熟练 你需要一些优化方法. 首先可以用秦九韶公式优化一下方 ...
- 2018.11.02 洛谷P2312 解方程(数论)
传送门 直接做肯定会TLETLETLE. 于是考验乱搞能力的时候到了. 我们随便选几个质数来checkcheckcheck合法解,如果一个数无论怎么checkcheckcheck都是合法的那么就有很大 ...
- 洛谷P2312解方程
传送门 思路分析 怎么求解呢? 其实我们可以把左边的式子当成一个算式来计算,从1到 $ m $ 枚举,只要结果是0,那么当前枚举到的值就是这个等式的解了.可以通过编写一个 $ bool $ 函数来判断 ...
- 洛谷P2312解方程题解
题目 暴力能得\(30\),正解需要其他的算法操作,算法操作就是用秦九韶算法来优化. 秦九韶算法就是求多项式的值时,首先计算最内层括号内一次多项式的值,然后由内向外逐层计算一次多项式的值,然后就将求\ ...
随机推荐
- iis7 运行 php5.5 的方法
首先添加IIS. 控制面板-〉程序-〉打开或关闭Windows功能 1. 勾选“Internet 信息服务” 2. 勾选“IIS 管理控制台” Internet 信息服务-〉Web 管理工具 ...
- eclipse/intellij idea 远程调试hadoop 2.6.0
很多hadoop初学者估计都我一样,由于没有足够的机器资源,只能在虚拟机里弄一个linux安装hadoop的伪分布,然后在host机上win7里使用eclipse或Intellj idea来写代码测试 ...
- 【转】如何拿到半数面试公司Offer——我的Python求职之路
原文地址 从八月底开始找工作,短短的一星期多一些,面试了9家公司,拿到5份Offer,可能是因为我所面试的公司都是些创业性的公司吧,不过还是感触良多,因为学习Python的时间还很短,没想到还算比较容 ...
- myeclipse中发送邮件出现Exception in thread "main" java.lang.NoClassDefFoundError: com/sun/mail/util/LineInputStream
出现这个问题的原因是jar包版本不统一,解决方法如下: 我在项目导入了jar包 与myeclipse自带jar冲突了 删除Java EE 5 Libraries/javaee.jar/mail里的包有 ...
- ASP.NET Web API Help Pages using Swagger
Understanding the various methods of an API can be a challenge for a developer when building a consu ...
- 常用 redis 命令(for php)
Redis 主要能存储 5 种数据结构,分别是 strings,hashes,lists,sets 以及 sorted sets. 新建一个 redis 数据库 $redis = new Redis( ...
- 用H5+Boostrap做简单的音乐播放器
前言:这个是综合一下我最近在学的东西做的小Demo,到实际使用还有距离,但是用来练手巩固知识点还是不错的,最近在二刷JS书和Boostrap.css的源码,做完这个Demo也算是暂告一段落,接下来是j ...
- Java:注解(元数据)
初识Java注解 所谓的元数据是指用来描述数据的数据,可能刚听到元数据的时候你会有点陌生,其实任何一个使用过struts或者hibernate的开发人员都在不知不觉中使用元数据,更通俗一点来说元数据是 ...
- 用程序集编写clr表值函数:把正则表达式引入数据库中
正则表达式非常好,但在数据库中就是没有,但可以通过程序集方式扩展 先编写一个dll,标量函数很好写,表值函数麻烦一点 下面是C#代码 using System; using System.Data; ...
- [BZOJ2730][HNOI2012]矿场搭建(求割点)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2730 分析: 如果坍塌的点不是割点,那没什么影响,主要考虑坍塌的点是割点的情况. 显然 ...