POJ3735 矩阵
题意:有n只猫咪,开始时每只猫咪有花生0颗,现有一组操作,由下面三个中的k个操作组成:
1. g i 给i只猫咪一颗花生米
2. e i 让第i只猫咪吃掉它拥有的所有花生米
3. s i j 将猫咪i与猫咪j的拥有的花生米交换
现将上述一组操作做m次后,问每只猫咪有多少颗花生?
sol: 可参考Matrix67《十个利用矩阵乘法解决的经典题目》
定义初始矩阵A = [1 0 0 0],0号元素固定为1,1~n分别为对应的猫所拥有的花生数。
对于第一种操作g i,我们在单位矩阵基础上使Mat[0][i]变为1,例如g 1:
1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1,显然[1 0 0 0]*Mat = [1 1 0 0]
对于第二种操作e i,我们在单位矩阵基础使Mat[i][i] = 0,例如e 2:
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1, 显然[1 2 3 4]*Mat = [1 2 0 4]
对于第三种操作s i j,我们在单位矩阵基础上使第i列与第j互换,例如s 1 2:
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0,显然[1 2 0 4]*Mat = [1 4 0 2]
现在,对于每一个操作我们都可以得到一个转置矩阵,把k个操作的矩阵相乘我们可以得到一个新的转置矩阵T。
A * T 表示我们经过一组操作,类似我们可以得到经过m组操作的矩阵为 A * T ^ m,最终矩阵的[0][1~n]即为答案。
PS:方法二:
我们还是以单位矩阵为基础:
对于第一种操作g i,我们使Mat[0][i] = Mat[0][i] + 1;
对于第二种操作e i,我们使矩阵的第i列清零;
对于第三种操作s i j,我们使第i列与第j列互换。
这样实现的话,我们始终在处理一个矩阵,免去构造k个矩阵的麻烦。
POJ3735 矩阵的更多相关文章
- xiaowuga poj3735—Training little cats(特殊操作转化为矩阵操作)
题意:有n只猫,对其进行k次操作,然后反复这样操作m次. 其中g 表示 i 猫加1, e表示 i 猫为0:s表示 i 与 j 猫互换. 解释一下样例: 3 1 6g 1g 2g 2s 1 2g 3e ...
- Training little cats(poj3735,矩阵快速幂)
Training little cats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10737 Accepted: ...
- poj3735—Training little cats(特殊操作转化为矩阵操作)
题目链接:http://poj.org/problem?id=3735 题目意思: 调教猫咪:有n只饥渴的猫咪,现有一组羞耻连续操作,由k个操作组成,全部选自: 1. g i 给第i只猫咪一颗花生 2 ...
- POJ3735【矩阵快速幂】
逛了一圈...觉得这篇讲的比较清楚:传送门~ 简要概括: 1.线性代数的知识,单位矩阵的利用:(如果不知道单位矩阵的,先去补习一下线代,做几题行列式就会了): 2.然后构造好矩阵以后,直接做M次乘积运 ...
- [poj3735] Training little cats_矩乘快速幂
Training little cats poj-3735 题目大意:给你n个数,k个操作,将所有操作重复m次. 注释:三种操作,将第i个盒子+1,交换两个盒子中的个数,将一个盒子清空.$1\le m ...
- ACM之路(18)—— 矩阵
矩阵是干什么的呢?一句话来说就是,知道相邻两个函数的递推关系和第一个数,让你递推到第n个数.显然,如果n很大,那么一个一个递推过去是会超时的.所以矩阵就是用来解决这种快速递推的问题的. 比方说斐波那契 ...
- C语言 · 矩阵乘法 · 算法训练
问题描述 输入两个矩阵,分别是m*s,s*n大小.输出两个矩阵相乘的结果. 输入格式 第一行,空格隔开的三个正整数m,s,n(均不超过200). 接下来m行,每行s个空格隔开的整数,表示矩阵A(i,j ...
- 获取Canvas当前坐标系矩阵
前言 在我的另一篇博文 Canvas坐标系转换 中,我们知道了所有的平移缩放旋转操作都会影响到画布坐标系.那在我们对画布进行了一系列操作之后,怎么再知道当前矩阵数据状态呢. 具体代码 首先请看下面的一 ...
- CSharpGL(32)矩阵与四元数与角度旋转轴的相互转换
CSharpGL(32)矩阵与四元数与角度旋转轴的相互转换 三维世界里的旋转(rotate),可以用一个3x3的矩阵描述:可以用(旋转角度float+旋转轴vec3)描述.数学家欧拉证明了这两种形式可 ...
随机推荐
- C#.NET 大型信息化系统集成快速开发平台 - 手机短信开发接口 4.0
可以批量发信息给手机,相同的信息发给多个手机号码的效果图 已发送手机短信列表 可以批量发手机的功能,可以把先有的待发信息列表,直接通过批量发送功能发出 这个是设置发送模板公式的功能展示,可以设置发送的 ...
- NOI2018准备Day1
今天刷基础题,字符串实在不想刷,做了20到多维数组题.老师说要10分钟一道,然而我加上整理差不多半小时一道吧... 总感觉自己效率比别人低了好多好多好多倍. 基础不牢,地动山摇,最近还是好好稳固基础题 ...
- [MetaHook] Surface hook
Hook ISurface function. #include <metahook.h> #include <vgui/ISurface.h> using namespace ...
- HDU2819-Swap-二分图匹配
把矩阵上的1建成边,把边建成点 然后跑一个二分图匹配,就找到了主对角线的元素,之后排个序就可以了 /*------------------------------------------------- ...
- python网络编程学习《一》
最近,刚实习完,很喜欢实验楼,但是自己的方向仍然不能确定,自己觉得可选择的空间很大,尽管已经是大四的人了,想到别人都在忙着买职业装,买高跟鞋面试,学习化妆什么的,看看自己,反而开始慢慢关注运动,食疗以 ...
- Dockerfile创建自定义Docker镜像以及CMD与ENTRYPOINT指令的比较
1.概述 创建Docker镜像的方式有三种 docker commit命令:由容器生成镜像: Dockerfile文件+docker build命令: 从本地文件系统导入:OpenVZ的模板. 关于这 ...
- 基于Html5缓存的页面P2P技术可行性探讨
P2P技术,在分享大文件(你懂的)是现在必不可缺的技术,现在的人,已经很难想象在没有这玩意的互联网早期,人们是怎样的艰难求生.想当年,不要说电影,下一个稍大点的文件,都是很吃力的事情. 后来牛人科恩, ...
- ASP.NET Web API 安全验证之摘要(Digest)认证
在基本认证的方式中,主要的安全问题来自于用户信息的明文传输,而在摘要认证中,主要通过一些手段避免了此问题,大大增加了安全性. 1.客户端匿名的方式请求 (无认证) HTTP/ Unauthorized ...
- [bzoj 3531][SDOI2014]旅行(树链剖分+动态开点线段树)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3531 分析: 对于每个颜色(颜色<=10^5)都建立一颗线段树 什么!那么不是M ...
- 准确率P 召回率R
Evaluation metricsa binary classifier accuracy,specificity,sensitivety.(整个分类器的准确性,正确率,错误率)表示分类正确:Tru ...