[问题2014S05] 解答  (本解答由谷嵘同学提供)

首先, 由 \(\mathrm{tr}(AB)=\mathrm{tr}(BA)\) 可得 \(a=0\), 或者由 Cauchy-Binet 公式知 \(|AB|=0\), 从而可得 \(a=0\).

其次, 我们来证明一个一般的结论.

引理  设 \(A\) 为 \(n\times m\) 矩阵, \(B\) 为 \(m\times n\) 矩阵, 则对任意的非零常数 \(\lambda_0\) 均有 \[m-\mathrm{rank}(\lambda_0I_m-BA)=n-\mathrm{rank}(\lambda_0I_n-AB).\]

引理的证明  采用与降阶公式类似的证明方法, 即分块矩阵的初等变换. 考虑如下分块矩阵: \[ M=\begin{bmatrix} I_n & A \\ B & \lambda_0I_m \end{bmatrix}.\]

先用 \(I_n\) 通过分块初等变换消去 \(A,B\), 可得 \(M\) 相抵于 \[\begin{bmatrix} I_n & 0 \\ 0 & \lambda_0I_m-BA \end{bmatrix};\] 再用 \(\lambda_0I_m\) 通过分块初等变换消去 \(A,B\), 可得 \(M\) 相抵于 \[\begin{bmatrix} I_n-\lambda_0^{-1}AB & 0 \\ 0 & \lambda_0I_m \end{bmatrix}.\] 比较两个分块对角阵的秩可得 \[n+\mathrm{rank}(\lambda_0I_m-BA)=m+\mathrm{rank}(\lambda_0I_n-AB). \quad\Box\]

回到原题, 通过简单的计算知道 \(\mathrm{rank}(BA-I_3)=1\), 因此由上述引理可得 \(\mathrm{rank}(AB-I_4)=2\). 我们注意到 \[AB-I_4=\begin{bmatrix} -15 & 0 & -15 & -32 \\ 2b-9 & 0 & 3b-9 & 4b-19 \\ 2 & 0 & 2 & 4 \\ 6 & 0 & 6 & 13 \end{bmatrix}\] 的第 3, 4 行是行向量的极大无关组, 从而第 2 行是第 3, 4 行的线性组合, 故 \(2b-9=3b-9\), 即 \(b=0\).

  (1) 本题原来的证法是想通过 \(BA\) 可对角化推出 \(AB\) 可对角化, 然后得到 \(b=0\), 具体的解题思路和方法请参考我和杨翎老师撰写的教学论文http://homepage.fudan.edu.cn/qhxie/files/2012/05/article05.pdf. 不过谷嵘同学提供的解法告诉我们,其实并不需要证明太多,有秩的等式就足够了.

(2) 本题其实是由第三届全国大学数学竞赛决赛第 5 题逆向命题而来, 请大家参考原题, 并仍用上述引理来证明 \(BA=9I_2\).

第三届全国大学数学竞赛决赛第 5 题  设 \(A,B\) 分别是 \(3\times 2\) 和 \(2\times 3\) 实矩阵, 若 \[AB=\left( \begin{array}{ccc} 8 & 0 & -4 \\ -\dfrac{3}{2} & 9 & -6 \\ -2 & 0 & 1 \end{array} \right),\] 求 \(BA\).

[问题2014S05] 解答的更多相关文章

  1. [问题2014A09] 解答

    [问题2014A09]  解答 通过简单的计算可得 \[(AB)^2=9AB,\cdots\cdots(1)\] 将 (1) 式的右边移到左边, 并将 \(A,B\) 分别提出可得 \[A(BA-9I ...

  2. 精选30道Java笔试题解答

    转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...

  3. 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团

    精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...

  4. 【字符编码】Java字符编码详细解答及问题探讨

    一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...

  5. spring-stutrs求解答

    这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...

  6. JavaScript Bind()趣味解答 包懂~~

    首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...

  7. CMMI4级实践中的5个经典问题及解答

    这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是:   A.流程,子流程部分不明白 ...

  8. 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final

    1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...

  9. 知乎大牛的关于JS解答

    很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...

随机推荐

  1. iOS 编程思想

    一 面向过程编程: 处理事情以过程为核心,一步一步的实现 二 面向对象编程: 万物皆对象 三 链式编程思想: 将多个操作通过点链接在一起成为一句代码 特点:方法返回值是Block,block必须有一个 ...

  2. heroku空间部署步骤

    一,下载安装heroku toolbelt 二,在dos窗口运行 heroku login 进行身份验证 三,heroku create appName --buildpack heroku/php ...

  3. 如何查看JSP和Servlet版本

    我们在java web开发的过程中,有时在资料上可能会提到环境所要支持的JSP,Servlet版本.如果版本低就可能出现测试错误. 方法:打开tomcat的common/lib 目录下,有两个JAR文 ...

  4. PHP第三方登录 -- 微博登录

    进化史 博客园 首页 新随笔 联系 管理 订阅 随笔- 9  文章- 0  评论- 0  php 实现qq第三方登录 学习之前,请大家先看一下oAuth协议. 首先呢,我们进入QQ互联的官方网站 ht ...

  5. Javascript备忘模式

    使用备忘模式,利用了函数的自定义属性,先看一个例子 var test = function (){} test.myAttr = "attr"; 这样,就给test加上了一个自定义 ...

  6. 浏览器同步测试神器 — BrowserSync

    Browsersync 能让浏览器实时.快速响应文件更改(html.js.css.sass.less等)并自动刷新页面.更重要的是 Browsersync可以同时在PC.平板.手机等设备下进项调试,当 ...

  7. MacOS10.11的/usr/bin目录不可写后class-dump的处理办法

    许多升级了OSX 10.11的朋友在配置class-dump的时候,会发现书上推荐的class-dump存放目录/usr/bin不再可写,如下所示: 192:~ snakeninny$ touch c ...

  8. centos7 systemctl命令

    systemctl命令是系统服务管理器指令,它实际上将 service 和 chkconfig 这两个命令组合到一起. 实例: 启动nfs服务:systemctl start nfs-server.s ...

  9. Git commit 常见用法

        Git commit git commit 主要是将用户通过git add命令添加到暂存区里的改动给提交到本地的版本库,关于版本库的构成可以查看我先前的笔记. 每次提交我们都会在本地版本库生成 ...

  10. 存储过程:当基站ID大于1000的时候,把ID通过存储过程插入表,然后处理

    不推荐这么弄,没办法,项目逼到这了,以后尽量避免这样的需求发生! CREATE OR REPLACE PROCEDURE insert_tempStation_proc(v_instr in clob ...