[问题2014A12]  解答

将问题转换成几何的语言: 设 \(\varphi,\psi\) 是 \(n\) 维线性空间 \(V\) 上的线性变换, 满足 \(\varphi\psi=\psi\varphi=0\), \(\mathrm{r}(\varphi)=\mathrm{r}(\varphi^2)\), 求证: \[\mathrm{r}(\varphi+\psi)=\mathrm{r}(\varphi)+\mathrm{r}(\psi).\cdots(1)\]

要证明 (1) 式, 我们只要证明 \[\mathrm{Im}(\varphi+\psi)=\mathrm{Im\,}\varphi\oplus\mathrm{Im\,}\psi,\cdots(2)\] 再两边同取维数即可. 在证明 (2) 式之前, 我们先引用复旦高代书第 208 页复习题 37 的结论:

结论  设 \(\varphi\) 是 \(n\) 维线性空间 \(V\) 上的线性变换, 满足 \(\mathrm{r}(\varphi)=\mathrm{r}(\varphi^2)\), 则 \[V=\mathrm{Ker\,}\varphi\oplus\mathrm{Im\,}\varphi.\cdots(3)\]

(2) 式的证明分成两步.

第一步证明 \(\mathrm{Im\,}\varphi+\mathrm{Im\,}\psi=\mathrm{Im\,}\varphi\oplus\mathrm{Im\,}\psi\). 由条件 \(\varphi\psi=0\) 可得 \(\mathrm{Im\,}\psi\subseteq\mathrm{Ker\,}\varphi\), 再由 (3) 式即得 \(\mathrm{Im\,}\varphi\cap\mathrm{Im\,}\psi=0\), 从而上述和为直和.

第二步证明 \(\mathrm{Im}(\varphi+\psi)=\mathrm{Im\,}\varphi+\mathrm{Im\,}\psi\). 由像空间的定义即得 \(\mathrm{Im}(\varphi+\psi)\subseteq\mathrm{Im\,}\varphi+\mathrm{Im\,}\psi\). 反之, 对 \(\mathrm{Im\,}\varphi+\mathrm{Im\,}\psi\) 中任一向量 \(\varphi(\alpha)+\psi(\beta)\), 其中 \(\alpha,\beta\in V\), 考虑 \(\alpha,\beta\) 关于 (3) 式的分解: \[\alpha=\alpha_1+\varphi(u),\,\,\,\,\beta=\beta_1+\varphi(v),\,\,\,\,\alpha_1,\beta_1\in\mathrm{Ker\,}\varphi,\,\,u,v\in V.\] 于是 \begin{eqnarray*}\varphi(\alpha)+\psi(\beta)&=&\varphi(\alpha_1+\varphi(u))+\psi(\beta_1+\varphi(v))=\varphi^2(u)+\psi(\beta_1) \\ &=& (\varphi+\psi)(\beta_1+\varphi(u))\in\mathrm{Im}(\varphi+\psi), \end{eqnarray*} 这就证明了第二步, 从而完成了 (2) 式的证明.  \(\Box\)

  在学了矩阵的 Jordan 标准形理论之后, 我们可以给出 [问题2014A12] 的一个十分简洁的代数证明.

[问题2014A12] 解答的更多相关文章

  1. 精选30道Java笔试题解答

    转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...

  2. 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团

    精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...

  3. 【字符编码】Java字符编码详细解答及问题探讨

    一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...

  4. spring-stutrs求解答

    这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...

  5. JavaScript Bind()趣味解答 包懂~~

    首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...

  6. CMMI4级实践中的5个经典问题及解答

    这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是:   A.流程,子流程部分不明白 ...

  7. 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final

    1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...

  8. 知乎大牛的关于JS解答

    很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...

  9. [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)

    [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1)  当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...

随机推荐

  1. div自定义的滚动条 (竖直导航条)

    <style type="text/css"> .scrollBar { width: 10px; background-color: #daa520; positio ...

  2. Web前端开发基础 第四课(CSS小技巧1)

    垂直居中-父元素高度确定的单行文本 父元素高度确定的单行文本的竖直居中的方法是通过设置父元素的 height 和 line-height 高度一致来实现的.如下代码: <div class=&q ...

  3. php课程---练习(发布新闻)

    做一个发布新闻的页面,实现发布新闻,查看新闻,修改新闻与删除等功能 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional/ ...

  4. 数据库---MySQL常用函数总结

    一.数学函数 数学函数主要用于处理数字,包括整型.浮点数等. ABS(x)    返回x的绝对值 SELECT ABS(-1) -- 返回1 CEIL(x),CEILING(x)    返回大于或等于 ...

  5. ThinkPHP3.2.3 自定义标签库的使用

    ThinkPHP 3.2.3 手册中标签库驱动的地址是: http://www.kancloud.cn/manual/thinkphp/1859 标签库的地址是:http://www.kancloud ...

  6. 显示HTML文本

    + (NSAttributedString*)getAttributedStringFromHtmlString:(NSString*)htmlString{ return [[NSAttribute ...

  7. 在CentOS 6.6下安装与配置mysql

    1.使用yum安装mysql yum list | grep mysql   //查看mysql信息 yum install mysql-server.x86_64 //安装mysql sudo ap ...

  8. iOS,iPhone各机型设备号,屏幕宽高,屏幕模式

    //获取设备型号 NSString *DeviceModel= [[UIDevice currentDevice] model]; //获取设备系统版本号 NSString *DeviceIOSVer ...

  9. DuiLib学习笔记1——编译运行demo

    c++中皮肤问题比较麻烦,MFC自带的太难用.DirectUI界面库就比较强大了,之前像skin++之类的基于DirectUI收费昂贵.DuiLib是基于DirectUI的界面库,可以将用户界面和处理 ...

  10. NULLIF()函数使用讲解

    NULLIF()函数接受两个参数.如果它们相等,那么返回空值:否则,返回第一个参数. 等价于下面的表达式: case when expression1=expression2 then null el ...