from numpy import *

class cluster_node:
def __init__(self,vec,left=None,right=None,distance=0.0,id=None,count=1):
self.left=left
self.right=right
self.vec=vec
self.id=id
self.distance=distance
self.count=count def L2dist(v1,v2):
return sqrt(sum((v1-v2)**2)) def L1dist(v1,v2):
return sum(abs(v1-v2)) def hcluster(features,distance=L2dist):
distances={}
currentclustid=-1
clust=[cluster_node(array(features[i]),id=i) for i in range(len(features))] while len(clust)>1:
lowestpair=(0,1)
closest=distance(clust[0].vec,clust[1].vec) for i in range(len(clust)):
for j in range(i+1,len(clust)):
if (clust[i].id,clust[j].id) not in distances:
distances[(clust[i].id,clust[j].id)]=distance(clust[i].vec,clust[j].vec) d=distances[(clust[i].id,clust[j].id)] if d<closest:
closest=d
lowestpair=(i,j) mergevec=[(clust[lowestpair[0]].vec[i]+clust[lowestpair[1]].vec[i])/2.0 \
for i in range(len(clust[0].vec))] newcluster=cluster_node(array(mergevec),left=clust[lowestpair[0]],
right=clust[lowestpair[1]],
distance=closest,id=currentclustid) currentclustid-=1
del clust[lowestpair[1]]
del clust[lowestpair[0]]
clust.append(newcluster) return clust[0] def extract_clusters(clust,dist):
clusters = {}
if clust.distance<dist:
return [clust]
else:
cl = []
cr = []
if clust.left!=None:
cl = extract_clusters(clust.left,dist=dist)
if clust.right!=None:
cr = extract_clusters(clust.right,dist=dist)
return cl+cr def get_cluster_elements(clust):
if clust.id>=0:
return [clust.id]
else:
cl = []
cr = []
if clust.left!=None:
cl = get_cluster_elements(clust.left)
if clust.right!=None:
cr = get_cluster_elements(clust.right)
return cl+cr def printclust(clust,labels=None,n=0):
for i in range(n): print (' '),
if clust.id<0:
print ('-')
else:
if labels==None: print (clust.id)
else: print (labels[clust.id])
if clust.left!=None: printclust(clust.left,labels=labels,n=n+1)
if clust.right!=None: printclust(clust.right,labels=labels,n=n+1) def getheight(clust):
if clust.left==None and clust.right==None: return 1
return getheight(clust.left)+getheight(clust.right) def getdepth(clust):
if clust.left==None and clust.right==None: return
return max(getdepth(clust.left),getdepth(clust.right))+clust.distance

HierarchicalClustering:编写HierarchicalClustering层次聚类算法—Jason niu的更多相关文章

  1. Python爬虫技术(从网页获取图片)+HierarchicalClustering层次聚类算法,实现自动从网页获取图片然后根据图片色调自动分类—Jason niu

    网上教程太啰嗦,本人最讨厌一大堆没用的废话,直接上,就是干! 网络爬虫?非监督学习? 只有两步,只有两个步骤? Are you kidding me? Are you ok? 来吧,follow me ...

  2. Hierarchical clustering:利用层次聚类算法来把100张图片自动分成红绿蓝三种色调—Jaosn niu

    #!/usr/bin/python # coding:utf-8 from PIL import Image, ImageDraw from HierarchicalClustering import ...

  3. 机器学习算法总结(五)——聚类算法(K-means,密度聚类,层次聚类)

    本文介绍无监督学习算法,无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类,常见的无监督学习就是聚类算法. 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善 ...

  4. 【Python机器学习实战】聚类算法(2)——层次聚类(HAC)和DBSCAN

    层次聚类和DBSCAN 前面说到K-means聚类算法,K-Means聚类是一种分散性聚类算法,本节主要是基于数据结构的聚类算法--层次聚类和基于密度的聚类算法--DBSCAN两种算法. 1.层次聚类 ...

  5. 挑子学习笔记:两步聚类算法(TwoStep Cluster Algorithm)——改进的BIRCH算法

    转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/twostep_cluster_algorithm.html 两步聚类算法是在SPSS Modeler中使用的 ...

  6. ROCK 聚类算法‏

    ROCK (RObust Clustering using linKs)  聚类算法‏是一种鲁棒的用于分类属性的聚类算法.该算法属于凝聚型的层次聚类算法.之所以鲁棒是因为在确认两对象(样本点/簇)之间 ...

  7. Mahout机器学习平台之聚类算法具体剖析(含实例分析)

    第一部分: 学习Mahout必需要知道的资料查找技能: 学会查官方帮助文档: 解压用于安装文件(mahout-distribution-0.6.tar.gz),找到例如以下位置.我将该文件解压到win ...

  8. ML: 聚类算法-概论

    聚类分析是一种重要的人类行为,早在孩提时代,一个人就通过不断改进下意识中的聚类模式来学会如何区分猫狗.动物植物.目前在许多领域都得到了广泛的研究和成功的应用,如用于模式识别.数据分析.图像处理.市场研 ...

  9. 聚类:层次聚类、基于划分的聚类(k-means)、基于密度的聚类、基于模型的聚类

    一.层次聚类 1.层次聚类的原理及分类 1)层次法(Hierarchicalmethods)先计算样本之间的距离.每次将距离最近的点合并到同一个类.然后,再计算类与类之间的距离,将距离最近的类合并为一 ...

随机推荐

  1. swiper轮播图(逆向自动切换类似于无限循环)

    swiper插件轮播图,默认的轮播循序是会从右向左,第一张,第二张,第三张,然后肉眼可见是的从第三张从左到右倒回第一张,这样就会有些视觉体验不高, ,不过还是能够用swiper本身的特性更改成无限循环 ...

  2. Confluence 6 查看空间活动

    空间活动信息是默认禁用(disabled by default)的.活动(Activity)的标没有显示,如果你的 Confluence Usage Stats  插件没有启用的.请查看下面的说明: ...

  3. Java的家庭记账本程序(E)

    日期:2019.2.9 博客期:032 星期二 今天是把程序的相关Bug补一补,嗯`: 1.添加了跳转说明 生成了一个对于成员的权限声明内容,用户再登陆界面点击Go按钮后,切换至说明页面,再次点击Go ...

  4. SpringCloud路由(网关)

    springcloud网关接口就类似于转发 搭建路由网关项目(ZuulDemo) 1.创建pom.xml <project xmlns="http://maven.apache.org ...

  5. SpringBoot定时任务

    代码做定时任务:1.开个线程,线程里面休眠去做 2.使用一些定时任务的框架去做 1.创建TimerTest类 package com.cppdy.service; import org.springf ...

  6. JSTL 标准标签库 (JavaServer Pages Standard Tag library, JSTL)

    JSP标准标签库(JavaServer Pages Standard Tag Library,JSTL)是一个定制标签库的集合,用来解决 像遍历Map或集合.条件测试.XML处理,甚至数据 库访问和数 ...

  7. python网络爬虫笔记(八)

    一.pthon 序列化json格式 1.将python内置对象转换成json 模块,dumps()方法返回的是一个str,内容是标准的JSON,dump()方法可以直接吧JSON写入一个file-li ...

  8. Python元组与列表的区别

    列表类似于我们用铅笔在纸上写字,写错了还可以擦掉:而元组则类似于用钢笔写字,写错了就擦不掉了,除非换张纸重写. 列表和元组的区别主要体现在一下几个方面: 列表属于可变序列,他的元素可以随时修改或删除: ...

  9. 集腋成裘-05-angularJS -初识angular

    私以为angular的最大特点是:只关注数据 1.1 angular之:双向绑定 <!DOCTYPE html> <html ng-app=""> < ...

  10. HDU 3336 Count the string(next数组运用)

    Count the string Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...