7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体。
设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆柱。当i < M时,要求Ri > Ri+1且Hi > Hi+1。

由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一层的下底面除外)的面积Q最小。

令Q = Sπ

请编程对给出的N和M,找出蛋糕的制作方案(适当的Ri和Hi的值),使S最小。

(除Q外,以上所有数据皆为正整数)

Input

有两行,第一行为N(N <= 10000),表示待制作的蛋糕的体积为Nπ;第二行为M(M <= 20),表示蛋糕的层数为M。

Output

仅一行,是一个正整数S(若无解则S = 0)。

Sample Input

100
2

Sample Output

68

Hint

圆柱公式
体积V = πR
2H

侧面积A' = 2πRH

底面积A = πR
2
 
思路:正常深搜,但是会TLE,需要众多剪枝
①我们可以预处理1~当前层所需的最小表面积和体积,然后如果已经选的表面积(体积)+ 剩下最小表面积(体积)超过ans(N规定体积)就return
②枚举r,h时,我们可以知道规定枚举范围,就不需要每次减一递减
maxR = min(r,sqrt(N-SumV-minV[now-1])
maxH = min(h,(n-SumV-minV[now-1])/(i*i))
③最难的一个剪枝:
n-SumV = Σh【k】*r【k】*r【k】   (1<=k<=now)               
2*Σr【k】*h【k】= 2/r【now+1】*Σr【k】*h【k】*r【now+1】 >=  2/r【now+1】*Σh【k】*r【k】*r【k】(1<=k<=now)
2*Σr【k】*h【k】 >= 2*(n-SumV)/r【now+1】  (1 <= k <= n)
所以 SumS + = 2*(n-SumV)/r【now+1】 >= ans 就return
因为当前dfs的r,h是本次选择的时候的边界,所以加个last变量记录r【now+1】即上次选择的半径r
 
#include<cstdio>
#include<cstdio>
#include<algorithm>
#include<math.h>
using namespace std; int n,m,ans;
int minV[];
int minS[];
void dfs(int now,int SumS,int SumV,int r,int h,int last)
{
if(SumS + minS[now] > ans)
return;
if(SumV + minV[now] > n)
return;
if(SumS + *(n-SumV)/last >= ans)
return;
if(!now)
{
if(SumV == n && SumS < ans)
ans = SumS;
return;
}
int maxR = min(r,(int)sqrt(n-SumV-minV[now-]));
for(int i=maxR;i>=now;i--)
{
if(now == m)SumS = i*i;
int maxH = min((n-minV[now-]-SumV)/(i*i), h);
for(int j=maxH;j>=now;j--)
{
dfs(now-,SumS+*i*j,SumV+i*i*j,i-,j-,r);
}
}
} int main()
{
ans = 0x3f3f3f3f;
for(int i=; i<=; i++)
{
minV[i] += minV[i-] + i*i*i;
minS[i] += minS[i-] + *i*i;
}
scanf("%d%d",&n,&m);
dfs(m,,,,,);
if(ans == 0x3f3f3f3f)ans = ;
printf("%d\n",ans);
}
 
 
 

生日蛋糕 POJ - 1190 (搜索+剪枝)的更多相关文章

  1. 生日蛋糕 POJ - 1190 搜索 数学

    http://poj.org/problem?id=1190 题解:四个剪枝. #define _CRT_SECURE_NO_WARNINGS #include<cstring> #inc ...

  2. 洛谷 P1731 [NOI1999]生日蛋糕 && POJ 1190 生日蛋糕

    题目传送门(洛谷)  OR 题目传送门(POJ) 解题思路: 一道搜索题,暴力思路比较容易想出来,但是这道题不剪枝肯定会TLE.所以这道题难点在于如何剪枝. 1.如果当前状态答案已经比我们以前某个状态 ...

  3. poj 2531 搜索剪枝

    Network Saboteur Time Limit: 2000 MS Memory Limit: 65536 KB 64-bit integer IO format: %I64d , %I64u ...

  4. 生日蛋糕 POJ - 1190

    7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体. 设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆柱.当 ...

  5. POJ 1190 生日蛋糕 【DFS + 极限剪枝】

    题目传送门:http://poj.org/problem?id=1190 参考剪枝:https://blog.csdn.net/nvfumayx/article/details/6653111 生日蛋 ...

  6. poj 1190 DFS 不等式放缩进行剪枝

    F - (例题)不等式放缩 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submi ...

  7. 搜索+剪枝——POJ 1011 Sticks

    搜索+剪枝--POJ 1011 Sticks 博客分类: 算法 非常经典的搜索题目,第一次做还是暑假集训的时候,前天又把它翻了出来 本来是想找点手感的,不想在原先思路的基础上,竟把它做出来了而且还是0 ...

  8. 【迭代博弈+搜索+剪枝】poj-1568--Find the Winning Move

    poj  1568:Find the Winning Move   [迭代博弈+搜索+剪枝] 题面省略... Input The input contains one or more test cas ...

  9. NOIP2015 斗地主(搜索+剪枝)

    4325: NOIP2015 斗地主 Time Limit: 30 Sec  Memory Limit: 1024 MBSubmit: 270  Solved: 192[Submit][Status] ...

随机推荐

  1. css样式之属性操作

    一.文本属性 1.text-align:cnter 文本居中 2.line heigth 垂直居中 :行高,和高度对应 3.设置图片与文本的距离:vertical-align 4.text-decor ...

  2. 1010:Tempter of the Bone

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1010 Problem Description The doggie found a bone in a ...

  3. LeetCode(77):组合

    Medium! 题目描述: 给定两个整数 n 和 k,返回 1 ... n 中所有可能的 k 个数的组合. 示例: 输入: n = 4, k = 2 输出: [ [2,4], [3,4], [2,3] ...

  4. 【linux】复制文件夹中文件,排除部分文件

    如下 cp `ls|grep -v -E '*json|out'|xargs` /home/data/ 用grep -v  表示排除, -E 表示正则 ls|grep -v -E '*json|out ...

  5. 《剑指offer》从上往下打印二叉树

    本题来自<剑指offer> 从上往下打印二叉树 题目: 从上往下打印出二叉树的每个节点,同层节点从左至右打印. 思路: 队列的思想. 先将根节点加入,当取该节点时候,依次将左右子树加入,直 ...

  6. tail -f -n 0 /var/log/messages

    <pre><font color="#CC0000"><b>root@kali</b></font>:<font ...

  7. hdu4370 dijkstra矩阵转单向边最短路矩阵+自环闭环

    /* 矩阵太神奇了Orz,网上的题解大多是spfa,不过我发想dijkstra也能做 把n*n的矩阵看成是单向边距离矩阵就行 */ #include<iostream> #include& ...

  8. selenium +python webdriver运行时报错cannot find Chrome binary

    今日在公司电脑运行自动化测试脚本,出现cannot find Chrome binary报错 百思不得其解,排错后发现应该是电脑以前有配置driver文件路径,driver所在文件路径已变更,现pyt ...

  9. Java 一个关于使用&&导致的BUG

    二维数据track的定义: byte[][] track = new byte[10][10]; 本意:判断track[trackY][trackX]的值是否为零,以及trackX是否小于10. 带B ...

  10. 目标检测中的mAP

    一.IOU的概念 交集和并集的比例(所谓的交集和并集,都是预测框和实际框的集合关系).如图: 二.Precision(准确率)和Recall(召回率)的概念 对于二分类问题,可将样例根据其真实类别和预 ...