ipvsadm命令参考及其应用例子

https://blog.csdn.net/orichisonic/article/details/47375227

只是简单创建了 service和添加server  发现挺容易的 复杂一些的应用还没开始看

感觉 得跟keepalived 一起学习 一起应用才好. 

最近学习进度比较慢. 感觉背单词花费时间超级长..
 

为了更好的让大家理解这份命令手册,将手册里面用到的几个术语先简单的介绍一下:

1、virtual-service-address:是指虚拟服务器的ip地址
2、real-service-address:是指真实服务器的ip 地址
3、scheduler:调度方法

ipvsadm 的用法和格式如下:
ipvsadm -A|E -t|u|f virutal-service-address:port [-s scheduler] [-p [timeout]] [-M netmask]
ipvsadm -D -t|u|f virtual-service-address
ipvsadm -C
ipvsadm -R
ipvsadm -S [-n]
ipvsadm -a|e -t|u|f service-address:port -r real-server-address:port [-g|i|m] [-w weight]
ipvsadm -d -t|u|f service-address -r server-address
ipvsadm -L|l [options]
ipvsadm -Z [-t|u|f service-address]
ipvsadm --set tcp tcpfin udp
ipvsadm --start-daemon state [--mcast-interface interface]
ipvsadm --stop-daemon
ipvsadm -h

命令选项解释:
有两种命令选项格式,长的和短的,具有相同的意思。在实际使用时,两种都可以。
-A --add-service 在内核的虚拟服务器表中添加一条新的虚拟服务器记录。也就是增加一台新的虚拟服务器。
-E --edit-service 编辑内核虚拟服务器表中的一条虚拟服务器记录。
-D --delete-service 删除内核虚拟服务器表中的一条虚拟服务器记录。
-C --clear 清除内核虚拟服务器表中的所有记录。
-R --restore 恢复虚拟服务器规则
-S --save 保存虚拟服务器规则,输出为-R 选项可读的格式
-a --add-server 在内核虚拟服务器表的一条记录里添加一条新的真实服务器记录。也就是在一个虚拟服务器中增加一台新的真实服务器
-e --edit-server 编辑一条虚拟服务器记录中的某条真实服务器记录
-d --delete-server 删除一条虚拟服务器记录中的某条真实服务器记录
-L|-l --list 显示内核虚拟服务器表
-Z --zero 虚拟服务表计数器清零(清空当前的连接数量等)
--set tcp tcpfin udp 设置连接超时值
--start-daemon 启动同步守护进程。他后面可以是master 或backup,用来说明LVS Router 是master 或是backup。在这个功能上也可以采用keepalived 的VRRP 功能。
--stop-daemon 停止同步守护进程
-h --help 显示帮助信息

其他的选项:
-t --tcp-service service-address 说明虚拟服务器提供的是tcp 的服务[vip:port] or [real-server-ip:port]
-u --udp-service service-address 说明虚拟服务器提供的是udp 的服务[vip:port] or [real-server-ip:port]
-f --fwmark-service fwmark 说明是经过iptables 标记过的服务类型。
-s --scheduler scheduler 使用的调度算法,有这样几个选项 rr|wrr|lc|wlc|lblc|lblcr|dh|sh|sed|nq,默认的调度算法是: wlc.
-p --persistent [timeout] 持久稳固的服务。这个选项的意思是来自同一个客户的多次请求,将被同一台真实的服务器处理。timeout 的默认值为300 秒。
-M --netmask netmask persistent granularity mask
-r --real-server server-address 真实的服务器[Real-Server:port]
-g --gatewaying 指定LVS 的工作模式为直接路由模式(也是LVS 默认的模式)
-i --ipip 指定LVS 的工作模式为隧道模式
-m --masquerading 指定LVS 的工作模式为NAT 模式
-w --weight weight 真实服务器的权值
--mcast-interface interface 指定组播的同步接口
-c --connection 显示LVS 目前的连接 如:ipvsadm -L -c
--timeout 显示tcp tcpfin udp 的timeout 值 如:ipvsadm -L --timeout
--daemon 显示同步守护进程状态
--stats 显示统计信息
--rate 显示速率信息
--sort 对虚拟服务器和真实服务器排序输出
--numeric -n 输出IP 地址和端口的数字形式

LVS的三种包转发方式

  LVS提供了三种包转发方式:NAT(网络地址映射)、IP Tunneling(IP隧道)、Direct Routing(直接路由)。不同的转发模式决定了不同的cluster的网络结构,下面对三种转发方式分别介始:

  NAT(网络地址映射)

   NAT方式可支持任何的操作系统,以及私有网络,并且只需一个Internet IP地址,但是整个系统的性能受到限制。因为执行NAT每次需要重写包,有一定的延迟;另外,大部分应用有80%的数据是从服务器流向客户机,也就是用户的请求非常短,而服务器的回应非常大,对负载均衡器形成很大压力,成为了新的瓶颈。

  IP Tunneling(IP隧道)

   director分配请求到不同的real server。real server处理请求后直接回应给用户,这样director负载均衡器仅处理客户机与服务器的一半连接。IP Tunneling技术极大地提高了director的调度处理能力,同时也极大地提高了系统能容纳的最大节点数,可以超过100个节点。real server可以在任何LAN或WAN上运行,这意味着允许地理上的分布,这在灾难恢复中有重要意义。服务器必须拥有正式的IP地址用于与客户机直接通信,并且所有服务器必须支持IP隧道协议。

  Direct Routing(直接路由)

  与IP Tunneling类似,负载均衡器仅处理一半的连接,避免了新的性能瓶颈,同样增加了系统的可伸缩性。Direct Routing与IP Tunneling相比,没有IP封装的开销,但由于采用物理层(修改MAC地址)技术,所有服务器都必须在一个物理网段。

LVS的负载调度算法

在内核中的连接调度算法上,IPVS已实现了以下八种调度算法:
一、轮叫调度(Round-Robin Scheduling) ----rr
轮叫调度(Round Robin Scheduling)算法就是以轮叫的方式依次将请求调度不同的服务器,即每次调度执行i = (i + 1) mod n,并选出第i台服务器。算法的优点是其简洁性,它无需记录当前所有连接的状态,所以它是一种无状态调度。

二、加权轮叫调度(Weighted Round-Robin Scheduling) ----wrr
加权轮叫调度(Weighted Round-Robin Scheduling)算法可以解决服务器间性能不一的情况,它用相应的权值表示服务器的处理性能,服务器的缺省权值为1。假设服务器A的权值为1,B的权值为2,则表示服务器B的处理性能是A的两倍。加权轮叫调度算法是按权值的高低和轮叫方式分配请求到各服务器。权值高的服务器先收到的连接,权值高的服务器比权值低的服务器处理更多的连接,相同权值的服务器处理相同数目的连接数。

三、最小连接调度(Least-Connection Scheduling) ---lc
最小连接调度(Least-Connection Scheduling)算法是把新的连接请求分配到当前连接数最小的服务器。最小连接调度是一种动态调度算法,它通过服务器当前所活跃的连接数来估计服务器的负载情况。调度器需要记录各个服务器已建立连接的数目,当一个请求被调度到某台服务器,其连接数加1;当连接中止或超时,其连接数减一。

四、加权最小连接调度(Weighted Least-Connection Scheduling)---wlc
加权最小连接调度(Weighted Least-Connection Scheduling)算法是最小连接调度的超集,这个是ipvsadm的默认算法。各个服务器用相应的权值表示其处理性能。服务器的缺省权值为1,系统管理员可以动态地设置服务器的权值。加权最小连接调度在调度新连接时尽可能使服务器的已建立连接数和其权值成比例。

五、基于局部性的最少链接(Locality-Based Least Connections Scheduling) --lblc
基于局部性的最少链接调度(Locality-Based Least Connections Scheduling,以下简称为LBLC)算法是针对请求报文的目标IP地址的负载均衡调度,目前主要用于Cache集群系统,因为在Cache集群中客户请求报文的目标IP地址是变化的。这里假设任何后端服务器都可以处理任一请求,算法的设计目标是在服务器的负载基本平衡情况下,将相同目标IP地址的请求调度到同一台服务器,来提高各台服务器的访问局部性和主存Cache命中率,从而整个集群系统的处理能力。LBLC调度算法先根据请求的目标IP地址找出该目标IP地址最近使用的服务器,若该服务器是可用的且没有超载,将请求发送到该服务器;若服务器不存在,或者该服务器超载且有服务器处于其一半的工作负载,则用“最少链接”的原则选出一个可用的服务器,将请求发送到该服务器。

六、带复制的基于局部性最少链接(Locality-Based Least Connections with Replication Scheduling)--lblcr
带复制的基于局部性最少链接调度(Locality-Based Least Connections with Replication Scheduling,以下简称为LBLCR)算法也是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。它与LBLC算法的不同之处是它要维护从一个目标IP地址到一组服务器的映射,而LBLC算法维护从一个目标IP地址到一台服务器的映射。对于一个“热门”站点的服务请求,一台Cache 服务器可能会忙不过来处理这些请求。这时,LBLC调度算法会从所有的Cache服务器中按“最小连接”原则选出一台Cache服务器,映射该“热门”站点到这台Cache服务器,很快这台Cache服务器也会超载,就会重复上述过程选出新的Cache服务器。这样,可能会导致该“热门”站点的映像会出现在所有的Cache服务器上,降低了Cache服务器的使用效率。LBLCR调度算法将“热门”站点映射到一组Cache服务器(服务器集合),当该“热门”站点的请求负载增加时,会增加集合里的Cache服务器,来处理不断增长的负载;当该“热门”站点的请求负载降低时,会减少集合里的Cache服务器数目。这样,该“热门”站点的映像不太可能出现在所有的Cache服务器上,从而提供Cache集群系统的使用效率。LBLCR算法先根据请求的目标IP地址找出该目标IP地址对应的服务器组;按“最小连接”原则从该服务器组中选出一台服务器,若服务器没有超载,将请求发送到该服务器;若服务器超载;则按“最小连接”原则从整个集群中选出一台服务器,将该服务器加入到服务器组中,将请求发送到该服务器。同时,当该服务器组有一段时间没有被修改,将最忙的服务器从服务器组中删除,以降低复制的程度。

七、目标地址散列调度(Destination Hashing Scheduling) ---dh
目标地址散列调度(Destination Hashing Scheduling)算法也是针对目标IP地址的负载均衡,但它是一种静态映射算法,通过一个散列(Hash)函数将一个目标IP地址映射到一台服务器。目标地址散列调度算法先根据请求的目标IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。

八、源地址散列调度(Source Hashing Scheduling)---sh
源地址散列调度(Source Hashing Scheduling)算法正好与目标地址散列调度算法相反,它根据请求的源IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。它采用的散列函数与目标地址散列调度算法的相同。它的算法流程与目标地址散列调度算法的基本相似,除了将请求的目标IP地址换成请求的源IP地址,所以这里不一一叙述。在实际应用中,源地址散列调度和目标地址散列调度可以结合使用在防火墙集群中,它们可以保证整个系统的唯一出入口。

应用例子:

由于LVS像iptable一样是工作在内核层,所以只需要安装模块ip_vs就可以了,并没有后台进程在跑。对应lvs主机三种方式分别用参数-m, -i, -g来实现。以下列举几种链接方式的配置方法:

1.NAT方式:

NAT配置方式最简单,只需要在LVS主机上配置就可以了,如下例子:


设置VIP主机:

ipvsadm -A -t 202.103.106.5:80 -s wlc

ipvsadm -A -t 202.103.106.5:21 -s wrr

ipvsadm -a -t 202.103.106.5:80 -r 172.16.0.2:80 -m

ipvsadm -a -t 202.103.106.5:80 -r 172.16.0.3:8000 -m -w 2

ipvsadm -a -t 202.103.106.5:21 -r 172.16.0.2:21 -m

2.TUN方式:

对LVS主机设置:


设置VIP主机:

ipvsadm -A -t 172.26.20.110:23 -s wlc ipvsadm -a -t 172.26.20.110:23 -r 172.26.20.112 -i

对每台real主机的设置:


echo 1 > /proc/sys/net/ipv4/ip_forward
#加载ipip模块
modprobe ipip
ifconfig tunl0 0.0.0.0 up
echo 1 > /proc/sys/net/ipv4/conf/all/hidden
echo 1 > /proc/sys/net/ipv4/conf/tunl0/hidden
ifconfig tunl0 172.26.20.110 netmask 255.255.255.255 broadcast 172.26.20.110 up

[转帖]ipvsadm命令参考及其应用例子的更多相关文章

  1. [转帖]git命令参考手册

                      git init                                                  # 初始化本地git仓库(创建新仓库) git ...

  2. LVS集群ipvsadm命令和调度算法(6)

    一.ipvsadm命令参考 为了更好的让大家理解这份命令手册,将手册里面用到的几个术语先简单的介绍一下: 术语解释: 1.virtual-service-address:是指虚拟服务器的ip地址2.r ...

  3. ipvsadm的命令参考

    相信很多同学和我差不多,半桶水,貌似在配置lvs双机的时候,直接用的keepalived,ipvsadm就用来看看,感觉没啥用,今天无聊到处逛发现,某大神说,keepalived只是ipvsadm的一 ...

  4. Filebeat命令参考

     Filebeat命令参考: Filebeat提供了一个命令行界面,用于启动Filebeat并执行常见任务,例如测试配置文件和加载仪表板.命令行还支持用于控制全局行为的全局标志. 命令: export ...

  5. [转帖]Linux命令中特殊符号

    Linux命令中特殊符号 转自:http://blog.chinaunix.net/uid-16946891-id-5088144.html   在shell中常用的特殊符号罗列如下:# ; ;; . ...

  6. centos LB负载均衡集群 三种模式区别 LVS/NAT 配置 LVS/DR 配置 LVS/DR + keepalived配置 nginx ip_hash 实现长连接 LVS是四层LB 注意down掉网卡的方法 nginx效率没有LVS高 ipvsadm命令集 测试LVS方法 第三十三节课

    centos   LB负载均衡集群 三种模式区别 LVS/NAT 配置  LVS/DR 配置  LVS/DR + keepalived配置  nginx ip_hash 实现长连接  LVS是四层LB ...

  7. 负载均衡集群ipvsadm命令及基本用法

    ipvsadm是LVS在应用层的管理命令,我们可以通过这个命令去管理LVS的配置.需要使用yum单独安装. 基本用法: ipvsadm COMMAND [protocol] service-addre ...

  8. Cluster基础(二):ipvsadm命令用法、部署LVS-NAT集群、部署LVS-DR集群

    一.ipvsadm命令用法 目标: 准备一台Linux服务器,安装ipvsadm软件包,练习使用ipvsadm命令,实现如下功能: 使用命令添加基于TCP一些的集群服务 在集群中添加若干台后端真实服务 ...

  9. maven命令参考简要

    命令参考简要说明 mvn archetype:generate — 创建生成Tiny骨架工程 参数名 说明 groupId 用户项目的包目录,用户需要根据实际情况设置.比如com.abc artifa ...

随机推荐

  1. Jenkins的环境部署

    一.Tomcat环境安装 1.安装JDK(Java环境) JDK下载地址:https://www.oracle.com/technetwork/java/javase/downloads/index. ...

  2. 5.06-re

    import re # 贪婪模式 从开头匹配到结尾 默认 # 非贪婪 one = 'mdfsdsfffdsn12345656n' two = "a\d" pattern = re. ...

  3. sql优化的几种方法

    在sql查询中为了提高查询效率,我们常常会采取一些措施对查询语句进行sql优化,下面总结的一些方法,有需要的可以参考参考. 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 ord ...

  4. pycharm 安装及使用

    pycharm 的使用: IDE 集成开发环境(Integrated Development Environment) VIM 经典的Linux下的文本编辑器 EMACS: Linux文本编辑器,比v ...

  5. 吴恩达课后作业学习1-week2-homework-logistic

    参考:https://blog.csdn.net/u013733326/article/details/79639509 希望大家直接到上面的网址去查看代码,下面是本人的笔记 搭建一个能够 “识别猫” ...

  6. element not interactable,这种提示表示元素当前在页面上不可见

    1.出现element not interactable,发现这个元素在页面上不可见,需要拖动下拉框才能看到这个元素 2.这个时候需要让元素在页面上可见,才可操作

  7. Spring Security(十一):4. Samples and Guides (Start Here)

    If you are looking to get started with Spring Security, the best place to start is our Sample Applic ...

  8. EF Core中,通过实体类向SQL Server数据库表中插入数据后,实体对象是如何得到数据库表中的默认值的

    我们使用EF Core的实体类向SQL Server数据库表中插入数据后,如果数据库表中有自增列或默认值列,那么EF Core的实体对象也会返回插入到数据库表中的默认值. 下面我们通过例子来展示,EF ...

  9. 深入理解Java中的反射机制

    JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意方法和属性:这种动态获取信息以及动态调用对象方法的功能称为java语言的反射机制. ...

  10. 【Java并发.2】线程安全性

    要编写线程安全的代码,其核心在于要对状态访问操作进行管理,特别是对共享(Shared)和可变的(Mutable)状态的访问. “共享”意味着变量可以由多个线程同时访问,而“可变”则意味着变量的值在其生 ...