POJ2175 Evacuation Plan
Time Limit: 1000MS | Memory Limit: 65536K | |||
Total Submissions: 4617 | Accepted: 1218 | Special Judge |
Description

To address this problem, The City Council has developed a special evacuation plan. Instead of assigning every worker to a fallout shelter individually (which will be a huge amount of information to keep), they allocated fallout shelters to municipal buildings, listing the number of workers from every building that shall use a given fallout shelter, and left the task of individual assignments to the buildings' management. The plan takes into account a number of workers in every building - all of them are assigned to fallout shelters, and a limited capacity of each fallout shelter - every fallout shelter is assigned to no more workers then it can accommodate, though some fallout shelters may be not used completely.
The City Council claims that their evacuation plan is optimal, in the sense that it minimizes the total time to reach fallout shelters for all workers in The City, which is the sum for all workers of the time to go from the worker's municipal building to the fallout shelter assigned to this worker.
The City Mayor, well known for his constant confrontation with The City Council, does not buy their claim and hires you as an independent consultant to verify the evacuation plan. Your task is to either ensure that the evacuation plan is indeed optimal, or to prove otherwise by presenting another evacuation plan with the smaller total time to reach fallout shelters, thus clearly exposing The City Council's incompetence.
During initial requirements gathering phase of your project, you have found that The City is represented by a rectangular grid. The location of municipal buildings and fallout shelters is specified by two integer numbers and the time to go between municipal building at the location (Xi, Yi) and the fallout shelter at the location (Pj, Qj) is Di,j = |Xi - Pj| + |Yi - Qj| + 1 minutes.
Input
The following N lines describe municipal buildings. Each line contains there integer numbers Xi, Yi, and Bi separated by spaces, where Xi, Yi (-1000 ≤ Xi, Yi ≤ 1000) are the coordinates of the building, and Bi (1 ≤ Bi ≤ 1000) is the number of workers in this building.
The description of municipal buildings is followed by M lines that describe fallout shelters. Each line contains three integer numbers Pj, Qj, and Cj separated by spaces, where Pi, Qi (-1000 ≤ Pj, Qj ≤ 1000) are the coordinates of the fallout shelter, and Cj (1 ≤ Cj ≤ 1000) is the capacity of this shelter.
The description of The City Council's evacuation plan follows on the next N lines. Each line represents an evacuation plan for a single building (in the order they are given in The City description). The evacuation plan of ith municipal building consists of M integer numbers Ei,j separated by spaces. Ei,j (0 ≤ Ei,j ≤ 1000) is a number of workers that shall evacuate from the ith municipal building to the jth fallout shelter.
The plan in the input file is guaranteed to be valid. Namely, it calls for an evacuation of the exact number of workers that are actually working in any given municipal building according to The City description and does not exceed the capacity of any given fallout shelter.
Output
Sample Input
3 4
-3 3 5
-2 -2 6
2 2 5
-1 1 3
1 1 4
-2 -2 7
0 -1 3
3 1 1 0
0 0 6 0
0 3 0 2
Sample Output
SUBOPTIMAL
3 0 1 1
0 0 6 0
0 4 0 1
Source
费用流消圈算法。
根据已有的残量矩阵建图,由于残量可以直接从图上读到,所以不需要在边里存容量。
SPFA判断是否有负环,有则处理。
有点没看懂,姑且抄份代码慢慢研究
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<algorithm>
#include<queue>
#define LL long long
using namespace std;
const int INF=1e9;
const int mxn=*;
inline int read(){
int sum=,flag=;char ch=getchar();
while(ch!='-'&&(ch>''||ch<''))ch=getchar();
if(ch=='-'){flag=-;ch=getchar();}
while(ch<=''&&ch>=''){sum=sum*+ch-'';ch=getchar();}
return sum*flag;
}
struct edge{
int u,v,nxt,w;
}e[mxn*mxn*];
int hd[mxn],mct=;
void add_edge(int u,int v,int w){
// printf("add:%d to %d :%d\n",u,v,w);
e[++mct].u=u;e[mct].v=v;e[mct].nxt=hd[u];e[mct].w=w;hd[u]=mct;return;
}
int n,m,S,T;
int mp[mxn][mxn];
int dis[mxn];
int pre[mxn];
int cnt[mxn];
bool inq[mxn];
bool SPFA(){
memset(dis,0x3f,sizeof dis);
memset(inq,,sizeof inq);
memset(cnt,,sizeof cnt);
queue<int>q;
q.push(T);
dis[T]=;inq[T]=;pre[T]=;cnt[T]++;
bool flag=;
int v;
while(!q.empty() && flag){
int u=q.front();q.pop();inq[u]=;
for(int i=hd[u];i;i=e[i].nxt){
v=e[i].v;
if(dis[v]>dis[u]+e[i].w){
dis[v]=dis[u]+e[i].w;
pre[v]=u;
if(!inq[v]){
q.push(v);
inq[v]=; cnt[v]++;
if(cnt[v]>=n+m+){
flag=;
break;
}
}
}
}
}
if(flag)printf("OPTIMAL\n");
else{
printf("SUBOPTIMAL\n");
memset(inq,,sizeof inq);
int s=v;
while(){
if(!inq[s])inq[s]=,s=pre[s];
else break;
}
memset(inq,,sizeof inq);
while(!inq[s]){
inq[s]=;
int p=pre[s];
if(p>n && s!=T) mp[s][p]--;
else if(s>n && p!=T) mp[p][s]++;
s=pre[s];
}
int ed=n+m;
for(int i=;i<=n;i++){//输出可行解
for(int j=n+;j<=ed;j++){
if(j!=n+)printf(" ");
printf("%d",mp[i][j]);
}
printf("\n");
}
}
return ;
}
int x[mxn],y[mxn],w[mxn],in[mxn];
void Build(){
memset(hd,,sizeof hd);
memset(in,,sizeof in);
mct=;
int i,j;
for(i=;i<=n;i++)
for(j=n+;j<=n+m;j++){
int v=abs(x[i]-x[j])+abs(y[i]-y[j])+;//代价
// printf("%d ",v);
add_edge(i,j,v);
if(mp[i][j])add_edge(j,i,-v);
in[j]+=mp[i][j];
}
// printf("\n");
for(i=n+;i<=n+m;i++){
if(in[i]) add_edge(T,i,);
if(in[i]<w[i])add_edge(i,T,);
}
return;
}
int main(){
int i,j;
while(scanf("%d%d",&n,&m)!=EOF){
int ed=n+m;T=;
for(i=;i<=ed;i++){
x[i]=read();y[i]=read();w[i]=read();
}
for(i=;i<=n;i++)
for(j=n+;j<=ed;j++)
mp[i][j]=read();
Build();
SPFA();
}
return ;
}
POJ2175 Evacuation Plan的更多相关文章
- POJ-2175 Evacuation Plan 最小费用流、负环判定
题意:给定一个最小费用流的模型,根据给定的数据判定是否为最优解,如果不为最优解则给出一个比给定更优的解即可.不需要得出最优解. 解法:由给定的数据能够得出一个残图,且这个图满足了最大流的性质,判定一个 ...
- POJ2175:Evacuation Plan(消负圈)
Evacuation Plan Time Limit: 1000MSMemory Limit: 65536KTotal Submissions: 5665Accepted: 1481Special J ...
- HDU 3757 Evacuation Plan DP
跟 UVa 1474 - Evacuation Plan 一个题,但是在杭电上能交过,在UVa上交不过……不知道哪里有问题…… 将施工队位置和避难所位置排序. dp[i][j] 代表前 i 个避难所收 ...
- Codeforces Gym 100002 E "Evacuation Plan" 费用流
"Evacuation Plan" Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/10 ...
- POJ 2175 Evacuation Plan (费用流,负环,消圈法,SPFA)
http://poj.org/problem?id=2175 Evacuation Plan Time Limit: 1000MS Memory Limit: 65536K Total Submi ...
- POJ 2175 Evacuation Plan
Evacuation Plan Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Origina ...
- POJ 2175 Evacuation Plan 费用流 负圈定理
题目给了一个满足最大流的残量网络,判断是否费用最小. 如果残量网络中存在费用负圈,那么不是最优,在这个圈上增广,增广1的流量就行了. 1.SPFA中某个点入队超过n次,说明存在负环,但是这个点不一定在 ...
- POJ 2157 Evacuation Plan [最小费用最大流][消圈算法]
---恢复内容开始--- 题意略. 这题在poj直接求最小费用会超时,但是题意也没说要求最优解. 根据线圈定理,如果一个跑完最费用流的残余网络中存在负权环,那么顺着这个负权环跑流量为1那么会得到更小的 ...
- UVA 1474 Evacuation Plan
题意:有一条公路,上面有n个施工队,要躲进m个避难所中,每个避难所中至少有一个施工队,躲进避难所的花费为施工队与避难所的坐标差的绝对值,求最小花费及策略. 解法:将施工队和避难所按坐标排序,可以看出有 ...
随机推荐
- jsPanel插件Option总结
jsPanel插件Option总结 学习jsPanel之余对相关的选项进行了总结,便于参考. # 选项名称 类别 简要说明 1 autoclose configuration 设置一个时间在毫秒后,面 ...
- (十四)Maven聚合与继承
1.Maven聚合 我们在平时的开发中,项目往往会被划分为好几个模块,比如common公共模块.system系统模块.log日志模块.reports统计模块.monitor监控模块等等.这时我们肯定会 ...
- JavaEE开发基础
1 JavaEE简介 Java平台有三个版本,分别是JavaSE(Java Platform, Standard Edition),JavaEE(Java Platform, Enterprise E ...
- Java文件中出现这样的提示错误与解决方法:Cannot return from outside a function or method?
1.打开 >> Myeclipse或Eclipse.(我使用的是Myeclipse) 2.打开 >> Window >> Preferences 如图 ...
- JavaScript (If...Else和Switch和循环遍历) 语句以及常用消息框
If...Else 语句 JavaScript中if...else语句和Java中的语法和使用方法是一样的. 只是在JavaScript中要使用小写字母.使用大写的 IF 会出错! 至于if...el ...
- Python导入其他文件中的.py文件 即模块
import sys sys.path.append("路径") import .py文件
- 项目游戏开发日记 No.0x000005
14软二杨近星(2014551622) 还有一周就要交项目了, 看着周围的人也都忙碌了起来, 看着大部分人的项目都已经初具容貌, 我们团队里面也搞得人心惶惶, 一来是, 时间不多了, 还有很多事情要做 ...
- 第10章 Shell编程(3)_字符处理命令和条件判断
3. 字符处理命令 3.1 排序命令:sort (1)sort命令:#sort [选项] 文件名 选项 作用 -f 忽略大小写 -n 以数值型进行排序,默认使用字符串型排序 -r 反向排序 -t 指定 ...
- 《中国文明史》系列—外柔 VS 内厉
读启良的<中国文明史>,里面有谈到外柔而内厉——中国政府自古以来奉行的准则.大致意思是说,我华夏民族对待周边民族,历来是很友好的,即所谓的“柔”,而对待自己人,向来是“刚”或曰“厉”的. ...
- Android相关小知识搜集
adb devices得到????????????错误结果 问题: 执行adb devices后,得到如下结果:???????????? device 相关背景: AOSP:Androi ...