Evacuation Plan
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 4617   Accepted: 1218   Special Judge

Description

The City has a number of municipal buildings and a number of fallout shelters that were build specially to hide municipal workers in case of a nuclear war. Each fallout shelter has a limited capacity in terms of a number of people it can accommodate, and there's almost no excess capacity in The City's fallout shelters. Ideally, all workers from a given municipal building shall run to the nearest fallout shelter. However, this will lead to overcrowding of some fallout shelters, while others will be half-empty at the same time.

To address this problem, The City Council has developed a special evacuation plan. Instead of assigning every worker to a fallout shelter individually (which will be a huge amount of information to keep), they allocated fallout shelters to municipal buildings, listing the number of workers from every building that shall use a given fallout shelter, and left the task of individual assignments to the buildings' management. The plan takes into account a number of workers in every building - all of them are assigned to fallout shelters, and a limited capacity of each fallout shelter - every fallout shelter is assigned to no more workers then it can accommodate, though some fallout shelters may be not used completely.

The City Council claims that their evacuation plan is optimal, in the sense that it minimizes the total time to reach fallout shelters for all workers in The City, which is the sum for all workers of the time to go from the worker's municipal building to the fallout shelter assigned to this worker.

The City Mayor, well known for his constant confrontation with The City Council, does not buy their claim and hires you as an independent consultant to verify the evacuation plan. Your task is to either ensure that the evacuation plan is indeed optimal, or to prove otherwise by presenting another evacuation plan with the smaller total time to reach fallout shelters, thus clearly exposing The City Council's incompetence.

During initial requirements gathering phase of your project, you have found that The City is represented by a rectangular grid. The location of municipal buildings and fallout shelters is specified by two integer numbers and the time to go between municipal building at the location (Xi, Yi) and the fallout shelter at the location (Pj, Qj) is Di,j = |Xi - Pj| + |Yi - Qj| + 1 minutes.

Input

The input consists of The City description and the evacuation plan description. The first line of the input file consists of two numbers N and M separated by a space. N (1 ≤ N ≤ 100) is a number of municipal buildings in The City (all municipal buildings are numbered from 1 to N). M (1 ≤ M ≤ 100) is a number of fallout shelters in The City (all fallout shelters are numbered from 1 to M).

The following N lines describe municipal buildings. Each line contains there integer numbers Xi, Yi, and Bi separated by spaces, where Xi, Yi (-1000 ≤ Xi, Yi ≤ 1000) are the coordinates of the building, and Bi (1 ≤ Bi ≤ 1000) is the number of workers in this building.

The description of municipal buildings is followed by M lines that describe fallout shelters. Each line contains three integer numbers Pj, Qj, and Cj separated by spaces, where Pi, Qi (-1000 ≤ Pj, Qj ≤ 1000) are the coordinates of the fallout shelter, and Cj (1 ≤ Cj ≤ 1000) is the capacity of this shelter.

The description of The City Council's evacuation plan follows on the next N lines. Each line represents an evacuation plan for a single building (in the order they are given in The City description). The evacuation plan of ith municipal building consists of M integer numbers Ei,j separated by spaces. Ei,j (0 ≤ Ei,j ≤ 1000) is a number of workers that shall evacuate from the ith municipal building to the jth fallout shelter.

The plan in the input file is guaranteed to be valid. Namely, it calls for an evacuation of the exact number of workers that are actually working in any given municipal building according to The City description and does not exceed the capacity of any given fallout shelter.

Output

If The City Council's plan is optimal, then write to the output the single word OPTIMAL. Otherwise, write the word SUBOPTIMAL on the first line, followed by N lines that describe your plan in the same format as in the input file. Your plan need not be optimal itself, but must be valid and better than The City Council's one.

Sample Input

3 4
-3 3 5
-2 -2 6
2 2 5
-1 1 3
1 1 4
-2 -2 7
0 -1 3
3 1 1 0
0 0 6 0
0 3 0 2

Sample Output

SUBOPTIMAL
3 0 1 1
0 0 6 0
0 4 0 1

Source

费用流消圈算法。

根据已有的残量矩阵建图,由于残量可以直接从图上读到,所以不需要在边里存容量。

SPFA判断是否有负环,有则处理。

有点没看懂,姑且抄份代码慢慢研究

 #include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<algorithm>
#include<queue>
#define LL long long
using namespace std;
const int INF=1e9;
const int mxn=*;
inline int read(){
int sum=,flag=;char ch=getchar();
while(ch!='-'&&(ch>''||ch<''))ch=getchar();
if(ch=='-'){flag=-;ch=getchar();}
while(ch<=''&&ch>=''){sum=sum*+ch-'';ch=getchar();}
return sum*flag;
}
struct edge{
int u,v,nxt,w;
}e[mxn*mxn*];
int hd[mxn],mct=;
void add_edge(int u,int v,int w){
// printf("add:%d to %d :%d\n",u,v,w);
e[++mct].u=u;e[mct].v=v;e[mct].nxt=hd[u];e[mct].w=w;hd[u]=mct;return;
}
int n,m,S,T;
int mp[mxn][mxn];
int dis[mxn];
int pre[mxn];
int cnt[mxn];
bool inq[mxn];
bool SPFA(){
memset(dis,0x3f,sizeof dis);
memset(inq,,sizeof inq);
memset(cnt,,sizeof cnt);
queue<int>q;
q.push(T);
dis[T]=;inq[T]=;pre[T]=;cnt[T]++;
bool flag=;
int v;
while(!q.empty() && flag){
int u=q.front();q.pop();inq[u]=;
for(int i=hd[u];i;i=e[i].nxt){
v=e[i].v;
if(dis[v]>dis[u]+e[i].w){
dis[v]=dis[u]+e[i].w;
pre[v]=u;
if(!inq[v]){
q.push(v);
inq[v]=; cnt[v]++;
if(cnt[v]>=n+m+){
flag=;
break;
}
}
}
}
}
if(flag)printf("OPTIMAL\n");
else{
printf("SUBOPTIMAL\n");
memset(inq,,sizeof inq);
int s=v;
while(){
if(!inq[s])inq[s]=,s=pre[s];
else break;
}
memset(inq,,sizeof inq);
while(!inq[s]){
inq[s]=;
int p=pre[s];
if(p>n && s!=T) mp[s][p]--;
else if(s>n && p!=T) mp[p][s]++;
s=pre[s];
}
int ed=n+m;
for(int i=;i<=n;i++){//输出可行解
for(int j=n+;j<=ed;j++){
if(j!=n+)printf(" ");
printf("%d",mp[i][j]);
}
printf("\n");
}
}
return ;
}
int x[mxn],y[mxn],w[mxn],in[mxn];
void Build(){
memset(hd,,sizeof hd);
memset(in,,sizeof in);
mct=;
int i,j;
for(i=;i<=n;i++)
for(j=n+;j<=n+m;j++){
int v=abs(x[i]-x[j])+abs(y[i]-y[j])+;//代价
// printf("%d ",v);
add_edge(i,j,v);
if(mp[i][j])add_edge(j,i,-v);
in[j]+=mp[i][j];
}
// printf("\n");
for(i=n+;i<=n+m;i++){
if(in[i]) add_edge(T,i,);
if(in[i]<w[i])add_edge(i,T,);
}
return;
}
int main(){
int i,j;
while(scanf("%d%d",&n,&m)!=EOF){
int ed=n+m;T=;
for(i=;i<=ed;i++){
x[i]=read();y[i]=read();w[i]=read();
}
for(i=;i<=n;i++)
for(j=n+;j<=ed;j++)
mp[i][j]=read();
Build();
SPFA();
}
return ;
}

POJ2175 Evacuation Plan的更多相关文章

  1. POJ-2175 Evacuation Plan 最小费用流、负环判定

    题意:给定一个最小费用流的模型,根据给定的数据判定是否为最优解,如果不为最优解则给出一个比给定更优的解即可.不需要得出最优解. 解法:由给定的数据能够得出一个残图,且这个图满足了最大流的性质,判定一个 ...

  2. POJ2175:Evacuation Plan(消负圈)

    Evacuation Plan Time Limit: 1000MSMemory Limit: 65536KTotal Submissions: 5665Accepted: 1481Special J ...

  3. HDU 3757 Evacuation Plan DP

    跟 UVa 1474 - Evacuation Plan 一个题,但是在杭电上能交过,在UVa上交不过……不知道哪里有问题…… 将施工队位置和避难所位置排序. dp[i][j] 代表前 i 个避难所收 ...

  4. Codeforces Gym 100002 E "Evacuation Plan" 费用流

    "Evacuation Plan" Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/10 ...

  5. POJ 2175 Evacuation Plan (费用流,负环,消圈法,SPFA)

    http://poj.org/problem?id=2175 Evacuation Plan Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  6. POJ 2175 Evacuation Plan

    Evacuation Plan Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Origina ...

  7. POJ 2175 Evacuation Plan 费用流 负圈定理

    题目给了一个满足最大流的残量网络,判断是否费用最小. 如果残量网络中存在费用负圈,那么不是最优,在这个圈上增广,增广1的流量就行了. 1.SPFA中某个点入队超过n次,说明存在负环,但是这个点不一定在 ...

  8. POJ 2157 Evacuation Plan [最小费用最大流][消圈算法]

    ---恢复内容开始--- 题意略. 这题在poj直接求最小费用会超时,但是题意也没说要求最优解. 根据线圈定理,如果一个跑完最费用流的残余网络中存在负权环,那么顺着这个负权环跑流量为1那么会得到更小的 ...

  9. UVA 1474 Evacuation Plan

    题意:有一条公路,上面有n个施工队,要躲进m个避难所中,每个避难所中至少有一个施工队,躲进避难所的花费为施工队与避难所的坐标差的绝对值,求最小花费及策略. 解法:将施工队和避难所按坐标排序,可以看出有 ...

随机推荐

  1. php简单实现socket通信

    socket通信的原理在这里就不说了,它的用途还是比较广泛的,我们可以使用socket来做一个API接口出来,也可以使用socket来实现两个程序之间的通信,我们来研究一下在php里面如何实现sock ...

  2. dotnet core 使用 MongoDB 进行高性能Nosql数据库操作

    好久没有写过Blog, 每天看着开源的Java社区流口水, 心里满不是滋味. 终于等到了今年六月份 dotnet core 的正式发布, 看着dotnet 社区也一步一步走向繁荣, 一片蒸蒸日上的大好 ...

  3. React Native学习笔记

    React 是使用ES6 ,支持JSX语法, 开发组件化web或native的工具. 现阶段使用Babel工具转换成ES5 代码. 组件通过props属性传递不变化的内容,UI通过state属性变动来 ...

  4. android Service介绍

    一.简介 android中service(服务)运行于后台,没有界面.和其他组件一样,service也运行在主线程中,因此不能用它来做耗时的请求或者动作.可以在服务中开启线程,在线程中做耗时操作.可以 ...

  5. Flash Professional 报错 TypeError: Error #1034: 强制转换类型失败:无法将 xxxx@zzzz 转换为 yyy

    通常是因为xxx yyy 两个不同链接名的元件 使用了同一个属性名

  6. java中IO流异常处理

    import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import ja ...

  7. JavaEE开发基础

    1 JavaEE简介 Java平台有三个版本,分别是JavaSE(Java Platform, Standard Edition),JavaEE(Java Platform, Enterprise E ...

  8. 教你怎么半天搞定Docker

    首先,不要把docker想的那么高大,它不就是先做个镜像,然后通过docker像虚拟机一样跑起来嘛...docker其实在真实业务场景中还是非常有局限性的.Dockerfile脚本也没那么好写,有些应 ...

  9. Maven:jar 下载相关的问题

    在使用Maven下载jar包时,会遇到一些问题,如何解决他们呢? 1.仓库里有jar 包,更新Maven时报仓库里找不到jar包的错误 这个问题,时常在版本有大的变动时出现.(例如:新增加了一些fea ...

  10. Oracle Partition Outer Join 稠化报表

    partition outer join实现将稀疏数据转为稠密数据,举例: with t as (select deptno, job, sum(sal) sum_sal from emp group ...