Codeforces 868F Yet Another Minimization Problem 决策单调性 (看题解)
Yet Another Minimization Problem
dp方程我们很容易能得出, f[ i ] = min(g[ j ] + w( j + 1, i ))。 然后感觉就根本不能优化。
然后就滚去学决策单调啦。 然后就是个裸题, 分治一下就好啦,
注意用分治找决策点需要的条件是我们找出被决策点不能作为当前转移的决策点使用。
如果w( j + 1, i )能很方便求出就能用单调栈维护, 并且找出的被决策点能当作当前转移的决策点使用。
我怎么感觉用bfs应该跑莫队的时候应该比dfs快啊, 但是居然还是dfs跑得快, 莫名其妙。。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long using namespace std; const int N = 1e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const double PI = acos(-); int n, k, a[N], cnt[N];
LL f[N], g[N]; int pl = , pr = ;
LL val; inline LL w(int i, int j) {
while(pl > i) pl--, val += cnt[a[pl]], cnt[a[pl]]++;
while(pr < j) pr++, val += cnt[a[pr]], cnt[a[pr]]++;
while(pl < i) cnt[a[pl]]--, val -= cnt[a[pl]], pl++;
while(pr > j) cnt[a[pr]]--, val -= cnt[a[pr]], pr--;
return val;
} void solve(int L, int R, int l, int r) {
if(l > r) return;
int mid = l + r >> , p = L;
for(int i = L; i <= min(R, mid); i++)
if(g[i] + w(i + , mid) < f[mid])
f[mid] = g[i] + w(i + , mid), p = i;
solve(L, p, l, mid - );
solve(p, R, mid + , r);
} int main() {
scanf("%d%d", &n, &k);
for(int i = ; i <= n; i++) {
scanf("%d", &a[i]);
f[i] = f[i - ] + cnt[a[i]];
cnt[a[i]]++;
}
for(int i = ; i <= k; i++) {
memset(cnt, , sizeof(cnt));
memcpy(g, f, sizeof(g));
memset(f, INF, sizeof(f));
solve(, n, , n);
}
printf("%lld\n", f[n]);
return ;
} /*
*/
Codeforces 868F Yet Another Minimization Problem 决策单调性 (看题解)的更多相关文章
- CodeForces 868F Yet Another Minimization Problem(决策单调性优化 + 分治)
题意 给定一个序列 \(\{a_1, a_2, \cdots, a_n\}\),要把它分成恰好 \(k\) 个连续子序列. 每个连续子序列的费用是其中相同元素的对数,求所有划分中的费用之和的最小值. ...
- Codeforces 868F. Yet Another Minimization Problem【决策单调性优化DP】【分治】【莫队】
LINK 题目大意 给你一个序列分成k段 每一段的代价是满足\((a_i=a_j)\)的无序数对\((i,j)\)的个数 求最小的代价 思路 首先有一个暴力dp的思路是\(dp_{i,k}=min(d ...
- Codeforces 868F Yet Another Minimization Problem(分治+莫队优化DP)
题目链接 Yet Another Minimization Problem 题意 给定一个序列,现在要把这个序列分成k个连续的连续子序列.求每个连续子序列价值和的最小值. 设$f[i][j]$为前 ...
- Codeforces 868F. Yet Another Minimization Problem
Description 给出一个长度为 \(n\) 的序列,你需要将它分为 \(k\) 段,使得每一段的价值和最小,每一段的价值是这一段内相同的数的个数 题面 Solution 容易想到设 \(f[i ...
- cf868F. Yet Another Minimization Problem(决策单调性 分治dp)
题意 题目链接 给定一个长度为\(n\)的序列.你需要将它分为\(m\)段,每一段的代价为这一段内相同的数的对数,最小化代价总和. \(n<=10^5,m<=20\) Sol 看完题解之后 ...
- CF868 F. Yet Another Minimization Problem 决策单调优化 分治
目录 题目链接 题解 代码 题目链接 CF868F. Yet Another Minimization Problem 题解 \(f_{i,j}=\min\limits_{k=1}^{i}\{f_{k ...
- 【CodeForces】868F. Yet Another Minimization Problem
原题链接 题目大意是有N个数,分成K段,每一段的花费是这个数里相同的数的数对个数,要求花费最小 如果只是区间里相同数对个数的话,莫队就够了 而这里是!边单调性优化边莫队(只是类似莫队)!而移动的次数和 ...
- Codeforces 258D Little Elephant and Broken Sorting (看题解) 概率dp
Little Elephant and Broken Sorting 怎么感觉这个状态好难想到啊.. dp[ i ][ j ]表示第 i 个数字比第 j 个数字大的概率.转移好像比较显然. #incl ...
- Codeforces 865C Gotta Go Fast 二分 + 期望dp (看题解)
第一次看到这种骚东西, 期望还能二分的啊??? 因为存在重置的操作, 所以我们再dp的过程中有环存在. 为了消除环的影响, 我们二分dp[ 0 ][ 0 ]的值, 与通过dp得出的dp[ 0 ][ 0 ...
随机推荐
- python连接kafka生产者,消费者脚本
# -*- coding: utf-8 -*- ''''' 使用kafka-Python 1.3.3模块 # pip install kafka==1.3.5 # pip install kafka- ...
- 转载:UML学习(二)-----类图(silent)
原文:http://www.cnblogs.com/huiy/p/8552607.html 1.什么是类图 类图(Class diagram)主要用于描述系统的结构化设计.类图也是最常用的UML图,用 ...
- <转载>关系规范化之求最小函数依赖集(最小覆盖)
原文链接http://blog.csdn.net/icurious/article/details/51240114 最小函数依赖集 一.等价和覆盖 定义:关系模式R<U,F>上的两个依赖 ...
- Ex 2_5 求解递推式..._第三次作业
- Python学习-字符编码浅析
1.什么是字符编码 既然是简述那肯定是简单明了.字符编码,看名字就是一种字符的编码格式,由于计算机内部采用二进制,想要将人类的语言字符输入到计算机就需要一种编码格式,这就是字符编码.字符------- ...
- poj1562 Oil Deposits 深搜模板题
题目描述: Description The GeoSurvComp geologic survey company is responsible for detecting underground o ...
- Java对象之间的深度复制拷贝
/* * Copyright (c) 1995, 2011, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETA ...
- Confluence 6 重要缓存和监控
重要缓存 下面的建议是基本上的一些配置帮助.在大型数据库中,20-30% 的数据库表大型可能是不需要如此膨胀的.在缓存配置的界面中,检查有效率和使用率的配置来进行必要的修改. 内容对象缓存(Conte ...
- Confluence 6 "net.sf.hibernate.PropertyValueException: not-null" 相关问题解决
如果你遇到了下面的错误信息,例如: ERROR [Importing data task] [confluence.importexport.impl.ReverseDatabinder] endEl ...
- laravel 服务提供者
服务提供者,在laravel里面,其实就是一个工厂类.它最大的作用就是用来进行服务绑定.当我们需要绑定一个或多个服务的时候,可以自定义一个服务提供者,然后把服务绑定的逻辑都放在该类的实现中.在lara ...