Codeforces 868F Yet Another Minimization Problem 决策单调性 (看题解)
Yet Another Minimization Problem
dp方程我们很容易能得出, f[ i ] = min(g[ j ] + w( j + 1, i ))。 然后感觉就根本不能优化。
然后就滚去学决策单调啦。 然后就是个裸题, 分治一下就好啦,
注意用分治找决策点需要的条件是我们找出被决策点不能作为当前转移的决策点使用。
如果w( j + 1, i )能很方便求出就能用单调栈维护, 并且找出的被决策点能当作当前转移的决策点使用。
我怎么感觉用bfs应该跑莫队的时候应该比dfs快啊, 但是居然还是dfs跑得快, 莫名其妙。。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long using namespace std; const int N = 1e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const double PI = acos(-); int n, k, a[N], cnt[N];
LL f[N], g[N]; int pl = , pr = ;
LL val; inline LL w(int i, int j) {
while(pl > i) pl--, val += cnt[a[pl]], cnt[a[pl]]++;
while(pr < j) pr++, val += cnt[a[pr]], cnt[a[pr]]++;
while(pl < i) cnt[a[pl]]--, val -= cnt[a[pl]], pl++;
while(pr > j) cnt[a[pr]]--, val -= cnt[a[pr]], pr--;
return val;
} void solve(int L, int R, int l, int r) {
if(l > r) return;
int mid = l + r >> , p = L;
for(int i = L; i <= min(R, mid); i++)
if(g[i] + w(i + , mid) < f[mid])
f[mid] = g[i] + w(i + , mid), p = i;
solve(L, p, l, mid - );
solve(p, R, mid + , r);
} int main() {
scanf("%d%d", &n, &k);
for(int i = ; i <= n; i++) {
scanf("%d", &a[i]);
f[i] = f[i - ] + cnt[a[i]];
cnt[a[i]]++;
}
for(int i = ; i <= k; i++) {
memset(cnt, , sizeof(cnt));
memcpy(g, f, sizeof(g));
memset(f, INF, sizeof(f));
solve(, n, , n);
}
printf("%lld\n", f[n]);
return ;
} /*
*/
Codeforces 868F Yet Another Minimization Problem 决策单调性 (看题解)的更多相关文章
- CodeForces 868F Yet Another Minimization Problem(决策单调性优化 + 分治)
题意 给定一个序列 \(\{a_1, a_2, \cdots, a_n\}\),要把它分成恰好 \(k\) 个连续子序列. 每个连续子序列的费用是其中相同元素的对数,求所有划分中的费用之和的最小值. ...
- Codeforces 868F. Yet Another Minimization Problem【决策单调性优化DP】【分治】【莫队】
LINK 题目大意 给你一个序列分成k段 每一段的代价是满足\((a_i=a_j)\)的无序数对\((i,j)\)的个数 求最小的代价 思路 首先有一个暴力dp的思路是\(dp_{i,k}=min(d ...
- Codeforces 868F Yet Another Minimization Problem(分治+莫队优化DP)
题目链接 Yet Another Minimization Problem 题意 给定一个序列,现在要把这个序列分成k个连续的连续子序列.求每个连续子序列价值和的最小值. 设$f[i][j]$为前 ...
- Codeforces 868F. Yet Another Minimization Problem
Description 给出一个长度为 \(n\) 的序列,你需要将它分为 \(k\) 段,使得每一段的价值和最小,每一段的价值是这一段内相同的数的个数 题面 Solution 容易想到设 \(f[i ...
- cf868F. Yet Another Minimization Problem(决策单调性 分治dp)
题意 题目链接 给定一个长度为\(n\)的序列.你需要将它分为\(m\)段,每一段的代价为这一段内相同的数的对数,最小化代价总和. \(n<=10^5,m<=20\) Sol 看完题解之后 ...
- CF868 F. Yet Another Minimization Problem 决策单调优化 分治
目录 题目链接 题解 代码 题目链接 CF868F. Yet Another Minimization Problem 题解 \(f_{i,j}=\min\limits_{k=1}^{i}\{f_{k ...
- 【CodeForces】868F. Yet Another Minimization Problem
原题链接 题目大意是有N个数,分成K段,每一段的花费是这个数里相同的数的数对个数,要求花费最小 如果只是区间里相同数对个数的话,莫队就够了 而这里是!边单调性优化边莫队(只是类似莫队)!而移动的次数和 ...
- Codeforces 258D Little Elephant and Broken Sorting (看题解) 概率dp
Little Elephant and Broken Sorting 怎么感觉这个状态好难想到啊.. dp[ i ][ j ]表示第 i 个数字比第 j 个数字大的概率.转移好像比较显然. #incl ...
- Codeforces 865C Gotta Go Fast 二分 + 期望dp (看题解)
第一次看到这种骚东西, 期望还能二分的啊??? 因为存在重置的操作, 所以我们再dp的过程中有环存在. 为了消除环的影响, 我们二分dp[ 0 ][ 0 ]的值, 与通过dp得出的dp[ 0 ][ 0 ...
随机推荐
- PHP导出MySQL数据字典 Summer-Mysql-Dic
2017年11月9日09:30:29 用 PHP 写的一个类文件, 用来导出MySQL数据字典 导出表信息; 字段信息, 索引信息 可以导出浏览器适用的样式, 也可以导出word文档 建议上线前用这个 ...
- 快速安装freeswitch
前不久在Centos 6.4上安装了一台Freeswitch,测试已经OK.为了测试FS 的集群效果,从新在安装一台FS,快速安装的过程如下: 方案一:快速安装前提:不用重新下载Freeswitch. ...
- oracle加密传输
参考文章: http://blog.itpub.net/24052272/viewspace-2129175/ oracle在传输过程中,正常是明文传输的,例如SQL以及执行的结果. 看看做的测试: ...
- LA 6893 矩阵HASH (模板)
#include<stdio.h> #include<string.h> typedef unsigned long long ULL; ; ; int test,n,m,x, ...
- python old six day
今天主要内容: . is 和== 的区别 . 编程的问题 一. is和==的区别! is 比较的是内存地址 == 比较的是值 记住结果就好 ⑴id 通过id() 我们查看到一个变量表示 ...
- ActiveMQ-为什么需要消息中间件?
消息中间件的优势 UNIX的进程间通信就开始运用消息队列技术,一个进程将数据写入某个特定的队列中,其它进程可以读取队列中的数据,从而实现异步通信.对于如今的分布式系统,消息队列已经演变为独立的消息中间 ...
- LONG数据类型转换为VARCHAR2并相互转换
--方法1,支持表 --plsql中将long类型隐式转换为varchar2,但是sql不能CREATE OR REPLACE FUNCTION LONG_TO_CHAR( in_rowid rowi ...
- for循环中按条件删除数据元素
var managerList = [ { id: 0, title: '小小消息的标题1', small: '小小消息内容', newsFlag:true, }, { id: 1, title: ' ...
- GZip使用
class Program { static void Main(string[] args) { //Trace.Listeners.Clear(); //Trace.Listeners.Add(n ...
- SQL Server2008从入门到精通pdf
下载地址:网盘下载 内容介绍 编辑 <SQL Server 从入门到精通>从初学者的角度出发,通过通俗易懂的语言.丰富多彩的实例,详细地介绍了SQLServer2008开发应该掌握的各方面 ...