Dividing the Path POJ - 2373(单调队列优化dp)
给出一个n长度的区间,然后有一些小区间只能被喷水一次,其他区间可以喷水多次,然后问你要把这个区间覆盖起来最小需要多少喷头,喷头的半径是[a, b]。
对于每个只能覆盖一次的区间,我们可以把他中间的部分标记起来,每次只在他的两端放置喷头,中间的点不能放置多余的喷头,然后找状态方程
dp[i] = 到第i个位置最少的喷头
然后dp[i] = min(dp[j])+1 2*b<=i-j<=2*a
然后用单调队列维护最小值,就可以了
#include<map>
#include<set>
#include<ctime>
#include<cmath>
#include<stack>
#include<queue>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define first fi
#define second se
#define lowbit(x) (x & (-x)) typedef unsigned long long int ull;
typedef long long int ll;
const double pi = 4.0*atan(1.0);
const int inf = 0x3f3f3f3f;
const int maxn = ;
const int maxm = ;
using namespace std; int n, m, T, tol;
int dp[maxn];
bool vis[maxn];
deque<int > q; void init() {
memset(dp, inf, sizeof dp);
memset(vis, , sizeof vis);
} int main() {
while(~scanf("%d%d", &m, &n)) {
init();
int a, b;
scanf("%d%d", &a, &b);
for(int i=; i<=m; i++) {
int be, en;
scanf("%d%d", &be, &en);
for(int j=be+; j<en; j++) vis[j] = true;
}
if(n&) {
printf("-1\n");
continue;
}
dp[] = ;
q.push_back();
for(int i=; i<=n; i+=) {
while(!q.empty() && i - *a >= && dp[i - *a] < dp[q.back()]) q.pop_back();
q.push_back(i-*a);
if(vis[i] || i < *a) continue;
while(!q.empty() && q.front() + *b < i) q.pop_front();
dp[i] = dp[q.front()] + ;
}
if(dp[n] >= inf) printf("-1\n");
else printf("%d\n", dp[n]);
}
return ;
}
Dividing the Path POJ - 2373(单调队列优化dp)的更多相关文章
- POJ 2373 单调队列优化DP
题意: 思路: f[i] = min(f[j]) + 1; 2 * a <= i - j <= 2 *b: i表示当前在第i个点.f[i]表示当前最少的线段个数 先是N^2的朴素DP(果断 ...
- POJ - 1821 单调队列优化DP + 部分笔记
题意:n个墙壁m个粉刷匠,每个墙壁至多能被刷一次,每个粉刷匠要么不刷,要么就粉刷包含第Si块的长度不超过Li的连续墙壁(中间可不刷),每一块被刷的墙壁都可获得Pi的利润,求最大利润 避免重复粉刷: 首 ...
- poj 2373 单调队列优化背包
思路:我们用单调队列保存2*b<=i-j<=2*a中的最大值.那么队列头就是最大值,如果队头的标号小于i-2*b的话,就出队,后面的肯定用不到它了. #include<iostrea ...
- poj 1821 Fence 单调队列优化dp
/* poj 1821 n*n*m 暴力*/ #include<iostream> #include<cstdio> #include<cstring> #incl ...
- POJ 1821 Fence(单调队列优化DP)
题解 以前做过很多单调队列优化DP的题. 这个题有一点不同是对于有的状态可以转移,有的状态不能转移. 然后一堆边界和注意点.导致写起来就很难受. 然后状态也比较难定义. dp[i][j]代表前i个人涂 ...
- 算法笔记--单调队列优化dp
单调队列:队列中元素单调递增或递减,可以用双端队列实现(deque),队列的前面和后面都可以入队出队. 单调队列优化dp: 问题引入: dp[i] = min( a[j] ) ,i-m < j ...
- 单调队列优化DP——习题收集
前言 感觉可以用单调队列优化dp的模型还是挺活的,开个随笔记录一些遇到的比较有代表性的模型,断续更新.主要做一个收集整理总结工作. 记录 0x01 POJ - 1821 Fence,比较适合入门的题, ...
- 单调队列优化DP,多重背包
单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- hdu3401:单调队列优化dp
第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...
随机推荐
- 上传图片(photoClip)
首先我们需要引入4个js包(这4个包总共106.6KB) <script src="__STATIC__/hammer.min.js" ></script> ...
- IdentityServer4【Topic】之授权类型
Grant Types 授权类型 授权类型指出了一个客户端如何与IdentityServer进行交互.OpenID Conect和OAuth2.0定义了如下的授权类型: Implicit Author ...
- 临时的ThisCall
// 获取当前定位 changeCity: function () { let that = this; that.locationClose(); Upj._changeCity().then((d ...
- MyBatis映射文件3(参数处理Map)
参数命名 POJO 如果多个参数,正好是业务逻辑的数据模型,那么我们就可以直接传入POJO,这样#{}中就可以直接使用属性名 Map 如果多个参数不是业务逻辑的数据模型,没有对应的POJO,为了方便, ...
- js中this指向、箭头函数
普通函数:this指向分为4种情况,1. obj.getName();//指向obj2.getName();//非严格模式下,指向window,严格模式下为undefined3. var a = ne ...
- C程序运行时的内存分布
该篇博客是自己学习的总结,如果有哪里理解的不对的地方,希望大家可以指点. 一.C内存空间分布图 二.各内存区域详解 1.代码区(.text): 该区域主要存放二进制可执行文件. 2.数据区(.data ...
- Python基础知识2-内置数据结构(上)
分类 数值型 用浮点型的时候注意别和"=="一起使用. 数字的处理函数 注意round()函数的特殊:四舍六入五取偶 类型判断 列表list 列表list定义 初始化 列表索引访 ...
- Spring框架IOC和AOP的实现原理
IoC(Inversion of Control) (1). IoC(Inversion of Control)是指容器控制程序对象之间的关系,而不是传统实现中,由程序代码直接操控.控制权由应用代码中 ...
- MySQL执行语句的顺序
MySQL的语句一共分为11步,最先执行的总是FROM操作,最后执行的是LIMIT操作.其中每一个操作都会产生一张虚拟的表,这个虚拟的表作为一个处理的输入,只是这些虚拟的表对用户来说是透明的,但是只有 ...
- URL & QRcode auto generator
URL & QRcode auto generator 二维码 npm & qrcode https://www.npmjs.com/package/qrcode https://ww ...