原文地址:https://www.jianshu.com/p/b2da4d94a122

一、概述

本文主要是从deep learning for nlp课程的讲义中学习、总结google word2vector的原理和词向量的训练方法。文中提到的模型结构和word2vector的代码实现并不一致,但是可以非常直观的理解其原理,对于新手学习有一定的帮助。(首次在简书写技术博客,理解错误之处,欢迎指正)


二、词向量及其历史

1. 词向量定义

  词向量顾名思义,就是用一个向量的形式表示一个词。为什么这么做?机器学习任务需要把任何输入量化成数值表示,然后通过充分利用计算机的计算能力,计算得出最终想要的结果。词向量的一种表示方式是one-hot的表示形式:

 
 

  首先,统计出语料中的所有词汇,然后对每个词汇编号,针对每个词建立V维的向量,向量的每个维度表示一个词,所以,对应编号位置上的维度数值为1,其他维度全为0。这种方式存在问题并且引发新的质疑:

1)无法衡量相关词之间的距离

 
 

  从语义上讲,hotel 和motel 更相关,和cat更不相关,但是无法表示这种差异。

2)V维表示语义空间是否有必要

one-hot的每一维度表示具体的词,我们假设存在更加抽象的维度能够表示词和词之间的相似性和差异性,并且词向量的维度远远小于V。例如,这些维度可以是时态,单复数等

2.词向量获取方法

1)基于奇异值分解的方法(奇异值分解

a、单词-文档矩阵

基于的假设:相关词往往出现在同一文档中,例如,banks 和 bonds, stocks,money 更相关且常出现在一篇文档中,而 banks 和 octous, banana, hockey 不太可能同时出现在一起。因此,可以建立词和文档的矩阵,通过对此矩阵做奇异值分解,可以获取词的向量表示。

b、单词-单词矩阵

基于的假设:一个词的含义由上下文信息决定,那么两个词之间的上下文相似,是否可推测二者非常相似。设定上下文窗口,统计建立词和词之间的共现矩阵,通过对矩阵做奇异值分解获得词向量。

2)基于迭代的方法

目前基于迭代的方法获取词向量大多是基于语言模型的训练得到的,对于一个合理的句子,希望语言模型能够给予一个较大的概率,同理,对于一个不合理的句子,给予较小的概率评估。具体的形式化表示如下:

 
 
 
 

第一个公式:一元语言模型,假设当前词的概率只和自己有关;第二个公式:二元语言模型,假设当前词的概率和前一个词有关。那么问题来了,如何从语料库中学习给定上下文预测当前词的概率值呢?

a、Continuous Bag of Words Model(CBOW)

给定上下文预测目标词的概率分布,例如,给定{The,cat,(),over,the,puddle}预测中心词是jumped的概率,模型的结构如下:

 
 

如何训练该模型呢?首先定义目标函数,随后通过梯度下降法,优化此神经网络。目标函数可以采用交叉熵函数:

 
 

由于yj是one-hot的表示方式,只有当yj=i 时,目标函数才不为0,因此,目标函数变为:

 
 

代入预测值的计算公式,目标函数可转化为:

 
 

b、Skip-Gram Model

skip-gram模型是给定目标词预测上下文的概率值,模型的结构如下:

 
 

同理,对于skip-ngram模型也需要设定一个目标函数,随后采用优化方法找到该model的最佳参数解,目标函数如下:

 
 

分析上述model发现,预概率时的softmax操作,需要计算隐藏层和输出层所有V中单词之间的概率,这是一个非常耗时的操作,因此,为了优化模型的训练,minkov文中提到Hierarchical softmax 和 Negative sampling 两种方法对上述模型进行训练,具体详细的推导可以参考文献1和文献2。

作者:Aroundtheworld
链接:https://www.jianshu.com/p/b2da4d94a122
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。

词向量之Word2vector原理浅析的更多相关文章

  1. 词向量模型word2vector详解

    目录 前言 1.背景知识 1.1.词向量 1.2.one-hot模型 1.3.word2vec模型 1.3.1.单个单词到单个单词的例子 1.3.2.单个单词到单个单词的推导 2.CBOW模型 3.s ...

  2. 词向量( Distributed Representation)工作原理是什么

    原文:http://www.zhihu.com/question/21714667 4 个回答 83赞同反对,不会显示你的姓名 皮果提 刘鑫.莫教授要养猫.Starling Niohuru 等人赞同 ...

  3. PyTorch基础——词向量(Word Vector)技术

    一.介绍 内容 将接触现代 NLP 技术的基础:词向量技术. 第一个是构建一个简单的 N-Gram 语言模型,它可以根据 N 个历史词汇预测下一个单词,从而得到每一个单词的向量表示. 第二个将接触到现 ...

  4. word2vec生成词向量原理

    假设每个词对应一个词向量,假设: 1)两个词的相似度正比于对应词向量的乘积.即:$sim(v_1,v_2)=v_1\cdot v_2$.即点乘原则: 2)多个词$v_1\sim v_n$组成的一个上下 ...

  5. DNN模型训练词向量原理

    转自:https://blog.csdn.net/fendouaini/article/details/79821852 1 词向量 在NLP里,最细的粒度是词语,由词语再组成句子,段落,文章.所以处 ...

  6. [Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型

    深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? ...

  7. Deep Learning In NLP 神经网络与词向量

    0. 词向量是什么 自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化. NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representati ...

  8. NLP︱高级词向量表达(二)——FastText(简述、学习笔记)

    FastText是Facebook开发的一款快速文本分类器,提供简单而高效的文本分类和表征学习的方法,不过这个项目其实是有两部分组成的,一部分是这篇文章介绍的 fastText 文本分类(paper: ...

  9. 文本分布式表示(二):用tensorflow和word2vec训练词向量

    看了几天word2vec的理论,终于是懂了一些.理论部分我推荐以下几篇教程,有博客也有视频: 1.<word2vec中的数学原理>:http://www.cnblogs.com/pegho ...

随机推荐

  1. .net导出Excel几种方式比较

    数据原共400条数据,21列,我是双核cpu,4G内存1. Excel com组件要3秒左右,上千条30秒+这种方法比较慢,要引用Microsoft.Office.Interop.Excel #reg ...

  2. 163邮箱SMTP设置

    如题要设置系统邮件自动发送 首先注册的网易邮箱要去开通SMTP服务,然后就是端口的设置 授权码 端口

  3. oracle杀掉连接

    相关sql --查看当前连接 select count(*) from v$process --数据库允许的最大连接数 select value from v$parameter where name ...

  4. C++使用libcurl

    1.下载地址https://curl.haxx.se/download.html 2.选择zip压缩包下载 3.选择合适自己的vc版本 4.启动项目选择libcurl 5.因为暂时不需要ssh2,预处 ...

  5. Spring AutoWire

    AutoWire 有 ByType ,ByName两种主要使用方式 public class Boss { @Autowired private Car car; public Car getCar( ...

  6. react编译报错:Import in body of module; reorder to top import/first

    原因是这样的: 我把一个组件分为三个文件, |—Home.jsx // 业务逻辑与html Home——|—Home.css // 样式 |—index.js // 引入Home.css ,再把Hom ...

  7. 15款Java程序员必备的开发工具(转)

    如果你是一名Web开发人员,那么用膝盖想也知道你的职业生涯大部分将使用Java而度过.这是一款商业级的编程语言,我们没有办法不接触它 对于Java,有两种截然不同的观点: 一种认为Java是最简单功能 ...

  8. jmeter 压力测试(二) 获取不同格式的当前时间

    在jmeter中获取当前时间可以用“time”函数,可以设置不同的格式,如下为几个最常见的例子: 输出看一下: 如此,基本满足了日常的需求,令可以根据自己的时间需求,设置格式.

  9. 委托(作用:解耦),lambda的演化

    1.了解委托 MyDelegate类代码如下: using System; using System.Collections.Generic; using System.Linq; using Sys ...

  10. Spring Boot学习记录(二)--thymeleaf模板 - CSDN博客

    ==他的博客应该不错,没有细看 Spring Boot学习记录(二)--thymeleaf模板 - CSDN博客 http://blog.csdn.net/u012706811/article/det ...