题目描述

  有\(n\)种面值不同的硬币,每种有无限个,且任意两个\((x,y)\)要么\(x\)是\(y\)的倍数,要么\(y\)是\(x\)的倍数。

  你要取\(m\)元钱,问你有多少种不同的取法。

  \(n\leq 50,m\leq {10}^{18}\)

题解

  假设面值为\(a_1,a_2,\ldots,a_n\)

  先把所有硬币按面值从小到大排序。

  那么考虑从小到大取钱。

  如果前面\(i\)种面值已经取完了,那么取的钱数\(\bmod\)\(a_{i+1}\)已经确定了。

  有这么一个DP:设\(f_i(x)\)为取完了前面\(i\)种面值的硬币,取的钱数为\(xa_i+m\bmod a_i\)的方案数。

  转移:枚举\(i\)这种硬币用了多少个(或者说剩下了多少个):

\[\begin{align}
f_i(x)&=\sum_{j=0}^x f_{i-1}(\frac{ja_i+m\bmod a_i}{a_{i-1}})\\
&=\sum_{j=0}^x f_{i-1}(bj+c)\\
\end{align}
\]

  我们很容易发现\(f_i(x)\)是一个\(i\)次函数。

  那么只需要求\(f_i(0)\ldots f_i(i)\)就可以了。

  每次可以通过线性插值求出。

  时间复杂度:\(O(n^3)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int p=998244353;
ll fp(ll a,ll b){ll s=1;for(;b;b>>=1,a=a*a%p)if(b&1)s=s*a%p;return s;}
int f[60][60];
int ifac[60];
int inv[60];
int pp[60];
int *pre=pp+1;
int suf[60];
ll a[60];
int n;
ll m;
int c[60];
int gao(int id,ll x)
{
if(x<=id)
return f[id][x];
x%=p;
pre[-1]=1;
for(int i=0;i<=id;i++)
pre[i]=ll(x-i)*pre[i-1]%p;
suf[id+1]=1;
for(int i=id;i>=0;i--)
suf[i]=ll(x-i)*suf[i+1]%p;
ll s=0;
for(int i=0;i<=id;i++)
s+=(ll)f[id][i]*pre[i-1]%p*suf[i+1]%p*ifac[i]%p*ifac[id-i]%p*((id-i)&1?-1:1);
return s%p;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
scanf("%d%lld",&n,&m);
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]);
ifac[0]=ifac[1]=inv[1]=1;
for(int i=2;i<=n;i++)
{
inv[i]=(ll)-p/i*inv[p%i]%p;
ifac[i]=(ll)ifac[i-1]*inv[i]%p;
}
f[1][0]=1;
f[1][1]=1;
for(int i=2;i<=n;i++)
for(int j=0;j<=i;j++)
f[i][j]=(f[i][j-1]+gao(i-1,(j*a[i]+m%a[i])/a[i-1]))%p;
int ans=gao(n,m/a[n]);
ans=(ans+p)%p;
printf("%lld\n",ans);
return 0;
}

【XSY2759】coin DP 线性插值的更多相关文章

  1. POJ1742 Coin [DP补完计划]

    题目传送门 Coins Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 41707   Accepted: 14125 Des ...

  2. [hdu 1398]简单dp

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1398 看到网上的题解都是说母函数……为什么我觉得就是一个dp就好了,dp[i][j]表示只用前i种硬币 ...

  3. 解题:USACO13NOV No Change

    题面 在朴素中透着一点新意的状压DP 一个很暴力的思路是枚举位置,状态和硬币,每次二分出向前最多能买到哪里,复杂度爆炸($O(2^knklog$ $n)$) 考虑优化,不妨先预处理一下$goal[i] ...

  4. Leetcode 322.零钱兑换

    零钱兑换 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成总金额,返回 -1. 示例 1: 输入: co ...

  5. Java实现 LeetCode 518 零钱兑换 II

    518. 零钱兑换 II 给定不同面额的硬币和一个总金额.写出函数来计算可以凑成总金额的硬币组合数.假设每一种面额的硬币有无限个. 示例 1: 输入: amount = 5, coins = [1, ...

  6. UVA 674 Coin Change (DP)

    Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cent. We want to make c ...

  7. UVA 674 Coin Change 换硬币 经典dp入门题

    题意:有1,5,10,25,50五种硬币,给出一个数字,问又几种凑钱的方式能凑出这个数. 经典的dp题...可以递推也可以记忆化搜索... 我个人比较喜欢记忆化搜索,递推不是很熟练. 记忆化搜索:很白 ...

  8. UVA 674 Coin Change(dp)

    UVA 674  Coin Change  解题报告 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730#problem/ ...

  9. [HDOJ]Coin Change(DP)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2069 题意 有面值1,5,10,25,50的硬币数枚,对于输入的面值n,输出可凑成面值n(且限制总硬笔 ...

随机推荐

  1. H5 15-交集选择器

    15-交集选择器 我是段落 我是段落 我是段落 我是段落 我是段落 <!DOCTYPE html> <html lang="en"> <head> ...

  2. [2019BUAA软工助教]Alpha阶段无人转出申请审核结果

    [2019BUAA软工助教]Alpha阶段无人转出申请审核结果 一.队伍信息 队伍名 项目 人数 红太阳 社团 8(6+2) pureman 博客园 6 水哥牛逼 招募 6 葫芦娃 拖拽Pytorch ...

  3. mysql创建数据库命令

    CREATE DATABASE IF NOT EXISTS yourdbname DEFAULT CHARSET utf8 COLLATE utf8_general_ci;

  4. 福州大学软件工程1816 | W班 第4次作业(团队展示)成绩排名

    作业链接 评分细则 队员姓名与学号(标记组长),其中4-7人一组,特殊情况经老师允许后可以突破限制:(1分) 队名(体现项目内容,并要求有亮点与个性):(1分) 拟作的团队项目描述:一句话(中英文不限 ...

  5. 09-babel

    这个是解析我们es6的代码的,为什么要用它呢,因为对于一些ie浏览器,甚至FF浏览器,低版本的还不能识别我们的es6代码,那么vue里面好多还让我们去写es6的代码,这个时候我们就可以用babel这个 ...

  6. 关于Fatal error: Paletter image not supported by webp 报错

    报错提示 Fatal error: Paletter image not supported by webp 原因是由于图片被非法编辑过(相对PHP来说)造成, 有可能是某些编辑图片的软件的格式与PH ...

  7. mysql sql执行计划

    查看Mysql执行计划 使用navicat查看mysql执行计划: 打开profile分析工具: 查看是否生效:show variable like ‘%profil%’; 查看进程:show pro ...

  8. HDU 4913 Least common multiple

    题目:Least common multiple 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4913 题意:有一个集合s,包含x1,x2,...,xn, ...

  9. .Net在操作mysql查询的时候出现“: Unknown column 'UserName' in 'where clause'”错误

    今天使用.Net操作mysql查询的时候,如果加上条件查询的时候就会出现 Unknown column 'UserName' in 'where clause'这个错,不加条件直接select * f ...

  10. Programming好文解读系列(—)——代码整洁之道

    注:初入职场,作为一个程序员,要融入项目组的编程风格,渐渐地觉得系统地研究下如何写出整洁而高效的代码还是很有必要的.与在学校时写代码的情况不同,实现某个功能是不难的,需要下功夫的地方在于如何做一些防御 ...