思路:

看了好久才看懂题意,文中给了n个点,有m个集合,每个集合有s个点,集合内的每两个点之间有一个权值为t的边,现在有两个人,要从1号点,和n号点,走到同一个顶点,问最少花费以及花费最少的点。

那就直接跑两遍最短路,然后枚举每一点,取最短路最大值最小的点。

然而这么浅显的做法却MLE啦,真是用心险恶的出题人呀。

其实仔细想一想就知道了,题目的要求是,每个集合里面,都是一个完全图,如果只有一个集合,那么2e5个点,边的条数就是4e10条,爆内存简直是必然的。所以需要在建图的时候优化,或者是换一种算法。如果要在建图的时候优化,那么就要忽视那些,在集合内,却没有与其他集合相连的点。如何找出这些点呢?很容易想到,如果一个点在输入的数据中出现了两次或以上,那么它一定是与其他集合有关的,但是如何记录这些点是一个很大的问题。如果用数组记录下每个集合有哪些点,或者每个点属于哪些集合,很明显都是不行的,但是如果使用vector呢?既然题目中已经提到了,s的和不会超过1e6,那么这样或许是可行的。我首先尝试了一下,记录下每个集合有哪些点。

然而还是炸了内存。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

自闭。

回来再想一想,好像还是没有最开始的完全图问题,因为这数据可以有两个集合,而这两个集合都是满的。。。。。(好歹毒呀)

最后我还是无耻得看了一下其他人的题解.了解了一种可以大幅减少完全图的边数.方法就是,在每一个完全图的边上,建一个虚拟点,让每一点去虚拟点的距离就是t,回来是0.如果是一般情况,也就是说,点到点之间的距离不相等的话,这个方法貌似就无法使用啦.

代码:

#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<deque>
#include<stack>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#define fuck(x) cout<<#x<<" = "<<x<<endl;
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int inf = 1.0e9+;
const ll INF = ;
const double eps = 1e-; int n,m;
ll diss1[maxn],diss2[maxn];
int num[maxn];
vector<int>u[maxn];
vector<ll>w[maxn];
bool book[*maxn];
void init()
{
for(int i=;i<=n*;i++){
u[i].clear();
w[i].clear();
diss1[i]=diss2[i]=INF;
}
} struct node
{
int x;
ll s;
bool operator<(const node p)const{return p.s<s;}
};
int Dijkstra(int sx,ll *dis)
{
memset(book,,sizeof(book));
dis[sx]=0ll;
priority_queue<node>q;
node exa;
exa.x=sx;
exa.s=0ll;
q.push(exa);
while(!q.empty()){
exa=q.top();q.pop();
if(book[exa.x]){continue;}
book[exa.x]=true;
int t=exa.x;
int siz=u[t].size();
for(int i=;i<siz;i++){
if(dis[u[t][i]]>dis[t]+w[t][i]){
dis[u[t][i]]=dis[t]+w[t][i];
exa.s=dis[u[t][i]];
exa.x=u[t][i];
q.push(exa);
}
}
}
} int main()
{
// ios::sync_with_stdio(false);
// freopen("in.txt","r",stdin); int T;
scanf("%d",&T);
int cases = ;
while(T--){
cases++;
scanf("%d%d",&n,&m);
init();
for(int i=;i<=m;i++){
int ss;
ll t;
scanf("%lld%d",&t,&ss);
for(int j=;j<=ss;j++){
scanf("%d",&num[j]);
}
for(int j=;j<=ss;j++){
u[num[j]].push_back(n+i);
w[num[j]].push_back(t);
u[n+i].push_back(num[j]);
w[n+i].push_back();
}
} Dijkstra(,diss1);
Dijkstra(n,diss2); ll ans = INF;
for(int i=;i<=n;i++){
diss1[i]=max(diss1[i],diss2[i]);
ans=min(ans,diss1[i]);
} printf("Case #%d: ",cases);
if(ans ==INF){printf("Evil John\n");continue;}
else printf("%lld\n",ans);
vector<int>anss;
for(int i=;i<=n;i++){
if(ans==diss1[i]){anss.push_back(i);}
}
int siz = anss.size();
for(int i=;i<siz-;i++){
printf("%d ",anss[i]);
}
printf("%d\n",anss[siz-]);
} return ;
}

∑mi=1Si≤10

HDU - 5521 Meeting (Dijkstra)的更多相关文章

  1. HDU 5521 Meeting(虚拟节点+最短路)

    Meeting Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total ...

  2. HDU 5521.Meeting 最短路模板题

    Meeting Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  3. HDU 5521 Meeting【最短路】

    今天旁观了Angry_Newbie的模拟区域赛(2015shenyang) 倒着看最先看的M题,很明显的最短路问题,在我看懂的时候他们已经开始敲B了. 后来听说D过了很多人.. D题一看是个博弈,给了 ...

  4. hdu 5521 Meeting(最短路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5521 题意:有1-n共n个点,给出m个块(完全图),并知道块内各点之间互相到达花费时间均为ti.已知两 ...

  5. HDU 5521 Meeting (最短路,dijstra)

    题意:有N个点,两个人,其中一个人住在点1,另一个人住在点n,有M个点集,集合内的数表示任意两点的距离为dis ,现在问,如果两个人要见面, 需要最短距离是多少,有哪几个点能被当成见面点. 析:分别对 ...

  6. HDU 5521 Meeting

    2015 ACM / ICPC 沈阳站现场赛 M题 最短路 设置N+M个节点,前N个节点是Block,后M个节点是Set,每一组Set中的点向该Set连边,从1和n开始分别求最短路.注意爆int. # ...

  7. HDU 5521:Meeting(最短路)

    http://acm.hdu.edu.cn/showproblem.php?pid=5521 Meeting Problem Description   Bessie and her friend E ...

  8. hdu 5521 最短路

    Meeting Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  9. Meeting HDU - 5521 虚点建图

    Problem Description Bessie and her friend Elsie decide to have a meeting. However, after Farmer John ...

随机推荐

  1. 老男孩python学习自修第十四天【序列化和json】

    序列化是使用二进制的方式加密列表,字典或集合,反序列化是解密的过程:序列化开启了两个独立进程进行数据交互的通路 使用pickle进行序列化和反序列化 例如: pickle_test.py #!/usr ...

  2. FormDestroy 和 FormClose 有什么区别和联系?

    1.窗口的所有资源真正释放时调用 FormDestroy.当你关闭窗口时,VCL会调用FormClose,如果你在FormClose里写Action = caFree,那么VCL会继续调用FormDe ...

  3. How to blog on Github

    git clone https://github.com/test/test.github.io.git cd ~/test.github.io git config --global push.de ...

  4. Civil 3D CustomDraw .NET混合项目设置

    样例文件中的CustomDraw项目使用的是COM API,但COM API不完整,某些时候需要使用.NET API,此时需要将C++项目设置成"公共语言运行时支持(/clr)"但 ...

  5. Python Argparse模块

    argparse模块 在Python中,argparse模块是标准库中用来解析命令行参数的模块,用来替代已经过时的optparse模块.argparse模块能够根据程序中的定义从sys.argv中解析 ...

  6. python成长之路一

    1,计算机基础 CPU:中央处理器,相当于人类的大脑,运算中心,控制中心. 内存:暂时储存数据,与CPU交互,8G,16G,32G,64G § 优点:读取速度快. § 缺点:容量小,造价高,断电即消失 ...

  7. UOJ356 [JOI2017春季合宿] Port Facility 【启发式合并】【堆】【并查集】

    题目分析: 好像跑得很快,似乎我是第一个启发式合并的. 把玩具看成区间.首先很显然如果有两个玩具的进出时间有$l1<l2<r1<r2$的关系,那么这两个玩具一定在不同的栈中间. 现在 ...

  8. HNOI2017 抛硬币 (FakeBeng)

    除了队长快跑外最难的题吧. 除了需要写\(exLucas\)之外,还教会了我大量的卡常技巧. 首先\(70\)分就是个直接按题意模拟,易得\(ans=\sum_{j=0}^{b} C_{b}^{j}\ ...

  9. Spring点滴五:Spring中的后置处理器BeanPostProcessor讲解

    BeanPostProcessor接口作用: 如果我们想在Spring容器中完成bean实例化.配置以及其他初始化方法前后要添加一些自己逻辑处理.我们需要定义一个或多个BeanPostProcesso ...

  10. 【BZOJ4887】[TJOI2017]可乐(矩阵快速幂)

    [BZOJ4887][TJOI2017]可乐(矩阵快速幂) 题面 BZOJ 洛谷 题解 模板题??? #include<iostream> #include<cstdio> # ...