先讲一下和这题一起四倍经验的题:

这题作为一道十分经典的平衡树维护序列的问题,自然是值得一做的了。

写完翻了下题解发现都是写Splay的dalao,少有的暴力FHQ_Treap党还是用指针实现的。

所以这里略微讲解下数组实现的FHQ_Treap好了,感觉写起来比Splay舒服些。

首先我们要抽象化一下题意:给你\(n\)个数,第\(i\)次操作在\([i,n]\)中找到最小值的位置\(p_i\),并翻转\([i,p_i]\)。最后输出所有\(p_i\)的值。

然后我们考虑转化问题(因为貌似FHQ_Treap不能同时支持基于权值split基于排名的分裂)。

所以离散化是必须的,尤其注意这里不能直接对数组排序(因为会有权值相等的点)。

然后我们记一下每个值原来的位置,再考虑对一个基本序列(即初始时为\(1,2,3,\dots,n\))进行翻转。

手动推导一下我们发现其实就是先找出每次操作位置的排名,然后再基本序列上不停翻转区间即可。

由于FHQ_Treap树高期望\(\log\)的特性,所以我们查询排名的时候可以直接暴力从一个点跳到根然后反着算回来。

最后提一下那种以权值为保证堆性质的值的做法是错误的!这样会导致树高不平衡,一旦遇到单调的数据就卡到\(O(n^2)\)了。

CODE

#include<cstdio>
#include<cctype>
#include<algorithm>
#define RI register int
#define CI const int&
#define Tp template <typename T>
using namespace std;
const int N=100005;
struct data
{
int val,id;
inline friend bool operator <(const data& A,const data& B)
{
return A.val<B.val||(A.val==B.val&&A.id<B.id);
}
}a[N]; int n,rk;
class FileInputOutput
{
private:
static const int S=1<<21;
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,S,stdin),A==B)?EOF:*A++)
#define pc(ch) (Ftop<S?Fout[Ftop++]=ch:(fwrite(Fout,1,S,stdout),Fout[(Ftop=0)++]=ch))
char Fin[S],Fout[S],*A,*B; int Ftop,pt[15];
public:
Tp inline void read(T& x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));
}
Tp inline void write(T x)
{
if (!x) return (void)(pc('0'),pc(' ')); RI ptop=0;
while (x) pt[++ptop]=x%10,x/=10; while (ptop) pc(pt[ptop--]+48); pc(' ');
}
inline void Fend(void)
{
fwrite(Fout,1,Ftop,stdout);
}
#undef tc
#undef pc
}F;
class FHQ_Treap
{
private:
struct treap
{
int ch[2],size,dat,fa; bool rev;
inline treap(CI Dat=0,CI Size=0)
{
ch[0]=ch[1]=rev=fa=0; dat=Dat; size=Size;
}
}node[N]; int tot,rt,seed,stack[N],top;
#define lc(x) node[x].ch[0]
#define rc(x) node[x].ch[1]
#define fa(x) node[x].fa
inline int rand(void)
{
return seed=(int)seed*482711LL%2147483647;
}
inline void swap(int& x,int& y)
{
int t=x; x=y; y=t;
}
inline void rever(CI x)
{
swap(lc(x),rc(x)); node[x].rev^=1;
}
inline void pushup(CI x)
{
node[x].size=node[lc(x)].size+node[rc(x)].size+1; fa(lc(x))=fa(rc(x))=x;
}
inline void pushdown(CI x)
{
if (node[x].rev) rever(lc(x)),rever(rc(x)),node[x].rev=0;
}
inline void merge(int& now,int x,int y)
{
if (!x||!y) return (void)(now=x|y); if (node[x].dat>node[y].dat)
pushdown(x),now=x,merge(rc(now),rc(x),y),pushup(x); else
pushdown(y),now=y,merge(lc(now),x,lc(y)),pushup(y);
}
inline void split(int now,int& x,int& y,int rk)
{
if (!now) return (void)(x=y=0); pushdown(now); if (node[lc(now)].size<rk)
x=now,split(rc(now),rc(x),y,rk-node[lc(now)].size-1); else
y=now,split(lc(now),x,lc(y),rk); pushup(now);
}
public:
FHQ_Treap() { seed=233; }
inline void insert(CI val)
{
node[++tot]=treap(rand(),1); merge(rt,rt,tot);
}
inline void reverse(RI l,RI r)
{
int x,y,z; split(rt,x,y,l-1); split(y,y,z,r-l+1);
rever(y); merge(y,y,z); merge(rt,x,y);
}
inline int get_rk(int now)
{
stack[top=1]=now; for (int t=now;fa(t);t=fa(t)) stack[++top]=fa(t);
while (top) pushdown(stack[top--]); int ret=node[lc(now)].size;
for (;now;now=fa(now)) if (now==rc(fa(now))) ret+=node[lc(fa(now))].size+1;
return ret+1;
}
#undef lc
#undef rc
}T;
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
RI i; for (F.read(n),i=1;i<=n;++i) F.read(a[i].val),a[i].id=i;
for (sort(a+1,a+n+1),i=1;i<=n;++i) T.insert(i); for (i=1;i<=n;++i)
rk=T.get_rk(a[i].id),F.write(rk),T.reverse(i,rk); return F.Fend(),0;
}

Luogu P3165 [CQOI2014]排序机械臂的更多相关文章

  1. P3165 [CQOI2014]排序机械臂

    题目描述 为了把工厂中高低不等的物品按从低到高排好序,工程师发明了一种排序机械臂.它遵循一个简单的排序规则,第一次操作找到高度最低的物品的位置 P1P_1P1​ ,并把左起第一个物品至 P1P_1P1 ...

  2. 洛谷P3165 [CQOI2014]排序机械臂

    题目描述 为了把工厂中高低不等的物品按从低到高排好序,工程师发明了一种排序机械臂.它遵循一个简单的排序规则,第一次操作找到摄低的物品的位置P1,并把左起第一个至P1间的物品反序:第二次找到第二低的物品 ...

  3. [UVA1402]Robotic Sort;[SP2059]CERC07S - Robotic Sort([洛谷P3165][CQOI2014]排序机械臂;[洛谷P4402][Cerc2007]robotic sort 机械排序)

    题目大意:一串数字,使用如下方式排序: 先找到最小的数的位置$P_1$,将区间$[1,P_1]$反转,再找到第二小的数的位置$P_2$,将区间$[2,P_2]$反转,知道排序完成.输出每次操作的$P_ ...

  4. 洛谷P3165 [CQOI2014]排序机械臂 Splay维护区间最小值

    可以将高度定义为小数,这样就完美的解决了优先级的问题. Code: #include<cstdio> #include<algorithm> #include<cstri ...

  5. 【BZOJ3506】[CQOI2014] 排序机械臂(Splay)

    点此看题面 大致题意: 给你\(n\)个数.第一次找到最小值所在位置\(P_1\),翻转\([1,P_1]\),第二次找到剩余数中最小值所在位置\(P_2\),翻转\([2,P_2]\),以此类推.求 ...

  6. 【洛谷 P3165】 [CQOI2014]排序机械臂 (Splay)

    题目链接 debug了\(N\)天没debug出来,原来是找后继的时候没有pushdown... 众所周知,,Splay中每个编号对应的节点的值是永远不会变的,因为所有旋转.翻转操作改变的都是父节点和 ...

  7. BZOJ1552[Cerc2007]robotic sort&BZOJ3506[Cqoi2014]排序机械臂——非旋转treap

    题目描述 输入 输入共两行,第一行为一个整数N,N表示物品的个数,1<=N<=100000. 第二行为N个用空格隔开的正整数,表示N个物品最初排列的编号. 输出 输出共一行,N个用空格隔开 ...

  8. bzoj3506 [Cqoi2014]排序机械臂

    bzoj3506 此题是一道比较简单的spaly题目. 用splay维护序列,将每个点排到对应的位置之后删除,这样比较容易区间翻转. 我的指针写法在洛谷上AC了,但在bzoj上RE. #include ...

  9. BZOJ3506/1502 [CQOI2014]排序机械臂

    传送门 依然是一道splay的区间操作,需要注意的是要把下标离散化后来表示splay的节点,我不知道怎么搞所以索性弄了个$ValuetoNode$,看样子没什么问题, 感觉他那个传下标的方法太暴力了. ...

随机推荐

  1. Python 关于类函数设计的一点总结

    关于类函数设计的一点总结 by:授客 QQ:1033553122 代码1 #!/usr/bin/env python #-*-encoding:utf-8-*- __author__ = 'shouk ...

  2. Native SBS for Android

    Native SBS for Android是一款非常棒的软件,支持安卓在2D界面下左右分屏显示,并可以设置缩放比例及左右间距,横屏自动切换为左右分屏显示模式,竖屏则为正常显示.启动左右分屏模式后,将 ...

  3. innodb二阶段日志提交机制和组提交解析

    前些天在查看关于innodb_flush_log_at_trx_commit的官网解释时产生了一些疑问,关于innodb_flush_log_at_trx_commit参数的详细解释参见官网: htt ...

  4. foreach Transform 同时chils.setParent引起的bug

    Transform继承自IEnumerable,可以对它进行迭代.但当你在迭代的同时,又对child进行setParent操作时,会出现意想不到的结果. 下面是我使用foreach和getchild得 ...

  5. 计数排序与桶排序python实现

    计数排序与桶排序python实现 计数排序 计数排序原理: 找到给定序列的最小值与最大值 创建一个长度为最大值-最小值+1的数组,初始化都为0 然后遍历原序列,并为数组中索引为当前值-最小值的值+1 ...

  6. 登录Windows界面前执行自定义脚本

    通常情况下,进入Windows界面之前都有一个登录过程,如何在登录前让系统执行脚本呢?下面介绍一种方法. 1.打开组策略,在Run(运行)中输入GREDIT.MSC,点击确认. 2.依次点击Compu ...

  7. C语言 统计一串字符中空格键、Tab键、回车键、字母、数字及其他字符的个数(Ctrl+Z终止输入)

    //凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ #include<stdio.h> void main(){ , num=, blank=, ...

  8. Python取整函数

    ceil() 向上取整 返回数字的上入整数,如ceil(4.1) 返回 5 ceil()接受的参数必须是数字类型,可以是True或者False,True(代表1),False(代表0),我试了ceil ...

  9. 微信H5开发,页面被缓存,不更新

    原文:https://blog.csdn.net/qq_27471405/article/details/79295348  这里只是备份 前言:每一次请求,我们都知道浏览器会做一定处理,其中就包括对 ...

  10. 简单的C#TCP协议收发数据示例

    参考:http://www.cnblogs.com/jzxx/p/5630516.html 一.原作者的这段话很好,先引用一下: Socket的Send方法,并非大家想象中的从一个端口发送消息到另一个 ...