I. 向量梯度

假设有一个映射函数为\(f:R^n→R^m\)和一个向量\(x=[x_1,...,x_n]^T∈R^n\),那么对应的函数值的向量为\(f(x)=[f_1(x),...,f_m(x)]^T∈R^m\)。

现在考虑\(f\)对\(x_i\)的梯度为:\(\frac{\partial{f}}{\partial{x_i}}=[\frac{\partial{f_1}}{\partial{x_i}},...,\frac{\partial{f_m}}{\partial{x_i}}]^T∈R^m\)

所以有
\[
\begin{align}
\frac{df(x)}{dx}&=
\left[
\begin{matrix}
\frac{\partial{f(x)}}{\partial{x_1}} & \cdots & \frac{\partial{f(x)}}{\partial{x_n}}
\end{matrix}
\right] \\
&=\left[
\begin{matrix}
\frac{\partial{f_1(x)}}{\partial{x_1}} & \cdots & \frac{\partial{f_1(x)}}{\partial{x_n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial{f_m(x)}}{\partial{x_1}} & \cdots & \frac{\partial{f_m(x)}}{\partial{x_n}} \\
\end{matrix}
\right] ∈R^{m×n} \\
\end{align}
\]

接下来给出Jacobian定义:

\(f:R^n→R^m\)的所有一阶偏导集合叫做Jacobian。Jacobian J 是一个\(m×n\)的矩阵,形式定义如下:
\[
\begin{align}
J&=\nabla_xf=\frac{df(x)}{dx} \\
&=\left[
\begin{matrix}
\frac{\partial{f(x)}}{\partial{x_1}} & \cdots & \frac{\partial{f(x)}}{\partial{x_n}}
\end{matrix}
\right] \\
&=\left[
\begin{matrix}
\frac{\partial{f_1(x)}}{\partial{x_1}} & \cdots & \frac{\partial{f_1(x)}}{\partial{x_n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial{f_m(x)}}{\partial{x_1}} & \cdots & \frac{\partial{f_m(x)}}{\partial{x_n}} \\
\end{matrix}
\right] \\
x &= \left[
\begin{matrix}
x_1 \\
\vdots \\
x_n
\end{matrix}
\right],\,\,\, J(i,j)=\frac{\partial{f_i}}{\partial{x_j}}
\end{align}
\]

II. 矩阵梯度

其实和向量梯度类似,这里不再给出推导过程,直接给出一些重要的结果:

  • 如果\(f(x)∈R^{m×n},x∈R^{p×q}\),则\(\frac{\partial{f(x)}}{\partial{x}}∈R^{(m×n)×(p×q)}\)
  • 在机器学习中常用到的计算公式:

III. 高阶梯度

上面提到的都是一阶梯度,在实际应用中会涉及到高阶梯度。而常见的有二阶梯度

海森矩阵(Hessian) 是一个多变量实值函数的二阶偏导数组成的方阵。其形式如下:

以下内容参考海森矩阵

1. 在映射 \({\displaystyle f:\mathbb {R} ^{2}\to \mathbb {R} }\) 的应用

给定二阶导数连续的映射 \({\displaystyle f:\mathbb {R} ^{2}\to \mathbb {R} }\),海森矩阵的行列式,可用于分辨 \({\displaystyle f}\)的临界点是属于鞍点还是极值点。

对于 \({\displaystyle f}\) f的临界点 \({\displaystyle (x_{0},y_{0})}\)一点,有 \({\displaystyle {\frac {\partial f(x_{0},y_{0})}{\partial x}}={\frac {\partial f(x_{0},y_{0})}{\partial y}}=0}\),然而凭一阶导数不能判断它是鞍点、局部极大点还是局部极小点。海森矩阵可能解答这个问题。

\[{\displaystyle H={\begin{vmatrix}{\frac {\partial ^{2}f}{\partial x^{2}}}&{\frac {\partial ^{2}f}{\partial x\,\partial y}}\\\\{\frac {\partial ^{2}f}{\partial y\,\partial x}}&{\frac {\partial ^{2}f}{\partial y^{2}}}\end{vmatrix}}={\frac {\partial ^{2}f}{\partial x^{2}}}{\frac {\partial ^{2}f}{\partial y^{2}}}-({\frac {\partial ^{2}f}{\partial y\,\partial x}})^{2}}\]

  • H > 0:若 \({\displaystyle {\frac {\partial ^{2}f}{\partial x^{2}}}>0}\),则 \({\displaystyle (x_{0},y_{0})})\)是局部极小点;若 \({\displaystyle {\frac {\partial ^{2}f}{\partial x^{2}}}<0}\),则 \({\displaystyle (x_{0},y_{0})}\)是局部极大点。
  • H < 0:\({\displaystyle (x_{0},y_{0})}\)是鞍点。
  • H = 0:二阶导数无法判断该临界点的性质,得从更高阶的导数以泰勒公式考虑。

2. 在高维情况下的推广

当函数 \({\displaystyle f:\mathbb {R} ^{n}\to \mathbb {R} }\) 二阶连续可导时,Hessian矩阵H在临界点 \({\displaystyle x_{0}}\) 上是一个 \({\displaystyle n\times n}\)阶的对称矩阵。

  • 当H是正定矩阵时,临界点 \({\displaystyle x_{0}}\) 是一个局部的极小值。
  • 当H是负定矩阵时,临界点 \({\displaystyle x_{0}}\) 是一个局部的极大值。
  • H=0,需要更高阶的导数来帮助判断。
  • 在其余情况下,临界点 \({\displaystyle x_{0}}\) 不是局部极值

MARSGGBO♥原创







2018-12-24

【Math for ML】向量微积分(Vector Calculus)的更多相关文章

  1. <<Vector Calculus>>笔记

    现在流行用Exterior Caculus, 所以个人觉得Matthews这本书有点过时了. 想学Vector Calculus的话,推荐<Vector Calculus, Linear Alg ...

  2. 【Math for ML】矩阵分解(Matrix Decompositions) (下)

    [Math for ML]矩阵分解(Matrix Decompositions) (上) I. 奇异值分解(Singular Value Decomposition) 1. 定义 Singular V ...

  3. <Vector Calculus>(by Paul C, Matthews) Notes

    现在流行用Exterior Caculus, 所以个人觉得Matthews这本书有点过时了. 想学Vector Calculus的话,推荐<Vector Calculus, Linear Alg ...

  4. R语言编程艺术# 数据类型向量(vector)

    R语言最基本的数据类型-向量(vector) 1.插入向量元素,同一向量中的所有的元素必须是相同的模式(数据类型),如整型.数值型(浮点数).字符型(字符串).逻辑型.复数型等.查看变量的类型可以用t ...

  5. 精解Mat类(一):基本数据类型-固定大小的 矩阵类(Matx) 向量类(Vector)

    一.基础数据类型 1.(基础)固定大小矩阵类 matx 说明: ①    基础矩阵是我个人增加的描述,相对于Mat矩阵类(存储图像信息的大矩阵)而言. ②    固定大小矩阵类必须在编译期间就知晓其维 ...

  6. R语言编程艺术#01#数据类型向量(vector)

    R语言最基本的数据类型-向量(vector) 1.插入向量元素,同一向量中的所有的元素必须是相同的模式(数据类型),如整型.数值型(浮点数).字符型(字符串).逻辑型.复数型等.查看变量的类型可以用t ...

  7. Silverlight & Blend动画设计系列十:Silverlight中的坐标系统(Coordinate System)与向量(Vector)运动

    如果我们习惯于数学坐标系,那么对于Silverlight中的坐标系可能会有些不习惯.因为在Silverlight中的坐标系与Flash中的坐标系一样,一切都的颠倒的.在标准的数学坐标系中,X轴表示水平 ...

  8. 向量容器vector操作

    1.向量容器vector 1.1 vector说明 进行vector操作前应添加头文件#include<vector>: vector是向量类型,可以容纳许多类型的数据,因此也被称为容器: ...

  9. 向量时钟Vector Clock in Riak

    Riak 是以 Erlang 编写的一个高度可扩展的分布式数据存储,Riak的实现是基于Amazon的Dynamo论文,Riak的设计目标之一就是高可用.Riak支持多节点构建的系统,每次读写请求不需 ...

随机推荐

  1. 洛谷P2765魔术球问题 最小路径覆盖

    https://www.luogu.org/problemnew/show/P2765 看到这一题第一眼想到:这不是二分最大流吗,后来发现还有一种更快的方法. 首先如果知道要放多少个球求最少的柱子,很 ...

  2. netty的对象传输

    pom <!-- https://mvnrepository.com/artifact/io.netty/netty-all --> <dependency> <grou ...

  3. Kafka技术内幕 读书笔记之(六) 存储层——服务端处理读写请求、分区与副本

    如下图中分区到 日 志的虚线表示 : 业务逻辑层的一个分区对应物理存储层的一个日志 . 消息集到数据文件的虚线表示 : 客户端发送的消息集最终会写入日志分段对应的数据文件,存储到Kafka的消息代理节 ...

  4. STM32学习笔记:【003】GPIO

    版本:STM32F429 Hal库v1.10 在STM32中,最常用到的功能莫过于GPIO(General Purpose Input Output .通用输入/输出)了,在STM32中,除了除去AD ...

  5. shop++改造之Filter类

    基于shop++源码进行商城改造.本来想大展手脚,结果一入手.发觉瞬间淹没了我的才华,sql语句也得贼溜没啥用. 不得不说这个商城源码价值很高,封装的很精屁. 下面是我第一天入手的坑. 数据库建好了表 ...

  6. PHP7 学习笔记(十一)使用phpstudy快速配置一个虚拟主机

    说明:为了windows本地开发php方便,这里推荐使用PHP集成环境phpstudy. 目的:使用域名访问项目(tinywan.test) 1.官网:http://www.phpstudy.net ...

  7. 理解BFC

    BFC:块格式化上下文(Block Formatting Context) 是Web页面的可视化CSS渲染的一部分,是布局过程中生成块级盒子的区域,也是浮动元素与其他元素的交互限定区域. BFC 是一 ...

  8. Win10 64位连接LJM1005打印机局域网访问

    除了网上常见的开Guest用户之类需要额外三个设置 (1)安装LJM1005驱动LJM1005_Full_Solution (2)设置打印机共享和安全中的everyone全部勾选(解决能看到打印机无法 ...

  9. Spring 快速开始 Profile 和 Bean

    和maven profile类似,Spring bean definition profile 有两个组件:声明和激活. [栗子:开发测试环境使用HyperSQL 生产环境使用JNDI上下文根据配置查 ...

  10. MySQL api

    今天看去年年中写的代码,留意到一个关键时刻能提高效率的api:on duplicate key update: 语法: INSERT INTO INSERT INTO g_iot_user_build ...