[JXOI2018]游戏
嘟嘟嘟
九条可怜竟然有这种良心题,似乎稍稍刷新了我对九条可怜的认识。
首先假设我们求出了所有必须要筛出来的数m,那么\(t(p)\)就只受最后一个数的位置影响。
所以我们枚举最后一个数的位置,然后用组合数搞一下就完事了。
令\(dp[i]\)表示最后一个数在位置\(i\)时,\(t(p)\)的和,则
\]
然后答案就是\(\sum _ {i = 1} ^ {n} dp[i]\)。
至于如何求\(m\),刚开始我以为是\([l, r]\)中的所有质数的个数,但想一想就会发现不对劲,比如\(l = 4, r = 10\),虽然4不是质数,但却必须选。
所以我一直在想用\(O(n)\)的方法筛出这些数。
但是怎么也想不出来。
最后无奈的写了个欧拉筛。
竟然过了。
看了题解才知道,欧拉筛复杂度是\(O(nloglogn)\)的,我记成了\(O(nlogn)\),而且常数小所以能跑过去,什么道理……
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1e7 + 5;
const ll mod = 1e9 + 7;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int l, r, n, cnt = 0;
ll fac[maxn], inv[maxn];
In ll quickpow(ll a, ll b)
{
ll ret = 1;
for(; b; b >>= 1, a = a * a % mod)
if(b & 1) ret = ret * a % mod;
return ret;
}
In ll A(int n, int m) {return fac[n] * inv[n - m] % mod;}
In ll inc(ll a, ll b) {return a + b >= mod ? a + b - mod : a + b;}
bool vis[maxn];
In void init()
{
fac[0] = inv[0] = 1;
for(int i = 1; i < maxn; ++i) fac[i] = fac[i - 1] * i % mod;
inv[maxn - 1] = quickpow(fac[maxn - 1], mod - 2);
for(int i = maxn - 2; i; --i) inv[i] = inv[i + 1] * (i + 1) % mod;
for(int i = l; i <= r; ++i)
if(!vis[i])
{
++cnt;
for(int j = i; j <= r; j += i) vis[j] = 1;
}
}
int main()
{
l = read(), r = read(); n = r - l + 1;
init();
ll ans = fac[cnt] * fac[n - cnt] % mod * cnt % mod;
for(int i = cnt + 1; i <= n; ++i)
ans = inc(ans, A(i - 1, cnt - 1) * cnt % mod * fac[n - cnt] % mod * i % mod);
write(ans), enter;
return 0;
}
[JXOI2018]游戏的更多相关文章
- 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)
[BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...
- [JXOI2018]游戏 (线性筛,数论)
[JXOI2018]游戏 \(solution:\) 这一道题的原版题面实在太负能量了,所以用了修改版题面. 这道题只要仔细读题,我们就可以将题目的一些基本性质分析出来:首先我们定义:对于某一类都可以 ...
- 【题解】JXOI2018游戏(组合数)
[题解]JXOI2018游戏(组合数) 题目大意 对于\([l,r]\)中的数,你有一种操作,就是删除一个数及其所有倍数.问你删除所有数的所有方案的步数之和. 由于这里是简化题意,有一个东西没有提到: ...
- luogu P4562 [JXOI2018]游戏 组合数学
LINK:游戏 当L==1的时候 容易想到 答案和1的位置有关. 枚举1的位置 那么剩下的方案为(R-1)! 那么总答案为 (R+1)*R/2(R-1)! 考虑L==2的时候 对于一个排列什么时候会终 ...
- 洛谷P4562 [JXOI2018]游戏(组合数学)
题意 题目链接 Sol 这个题就比较休闲了. \(t(p)\)显然等于最后一个没有约数的数的位置,那么我们可以去枚举一下. 设没有约数的数的个数有\(cnt\)个 因此总的方案为\(\sum_{i=c ...
- 洛谷P4562 [JXOI2018]游戏 数论
正解:数论 解题报告: 传送门! 首先考虑怎么样的数可能出现在t(i)那个位置上?显然是[l,r]中所有无法被表示出来的数(就约数不在[l,r]内的数嘛QwQ 所以可以先把这些数筛出来 具体怎么筛的话 ...
- BZOJ5323:[JXOI2018]游戏
传送门 不难发现,所有不能被其他数筛掉的数是一定要选的,只有选了这些数字才能结束 假设有 \(m\) 个,枚举结束时间 \(x\),答案就是 \(\sum \binom{x-1}{m-1}m!(n-m ...
- P4562 [JXOI2018]游戏
题面 题目描述 她长大以后创业了,开了一个公司. 但是管理公司是一个很累人的活,员工们经常背着可怜偷懒,可怜需要时不时对办公室进行检查. 可怜公司有 \(n\) 个办公室,办公室编号是 \(l\) 到 ...
- BZOJ5323 JXOI2018游戏(线性筛+组合数学)
可以发现这个过程非常类似埃氏筛,将在该区间内没有约数的数定义为质数,那么也就是求每种方案中选完所有质数的最早时间之和. 于是先求出上述定义中的质数个数,线性筛即可.然后对每个最短时间求方案数,非常显然 ...
随机推荐
- 6、两个数组的交集 II
6.两个数组的交集 II 给定两个数组,编写一个函数来计算它们的交集. 示例 1: 输入: nums1 = [1,2,2,1], nums2 = [2,2] 输出: [2,2] 示例 2: 输入: n ...
- HTML设为首页/加入收藏代码
(特别注意:要把'这个符号换成无任何输入法状态中输入的'这个符号,否则程序无法运行) 1.文字型: <a onclick="this.style.behavior='url ...
- 2018最新iOS端界面UI设计规范整理
在iPhone 6还没出的时候,都是用640×1136 px来做设计稿的,自从6的发布,所有的设计稿尺寸以750×1334 px来做设计稿尺寸 以750x1334px作为设计稿标准尺寸的原由: 从中间 ...
- 工作笔记-table问题汇总(vue单文件组件)
1.vue: computed里定义的数据,在其他地方不能再重新赋值,会报错: Computed property "xxxxxx" was assigned to but it ...
- Java并发编程学习:volatile关键字解析
转载:https://www.cnblogs.com/dolphin0520/p/3920373.html 写的非常棒,好东西要分享一下 Java并发编程:volatile关键字解析 volatile ...
- HDU 4764 Stone(巴什博奕)
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission( ...
- JAVA 利用MyEclipse结合TestNG测试框架进行单元测试
利用MyEclipse结合TestNG测试框架进行单元测试 by:授客 QQ:1033553122 测试环境 jdk1.8.0_121 myeclipse-10.0-offline-install ...
- java方法中把对象置null,到底能不能加速垃圾回收
今天逛脉脉,看见匿名区有人说java中把对做置null,这种做法很菜,不能加速垃圾回收,但是我看到就觉得呵呵了,我是觉得可以加速置null对象回收的. 测试的过程中,费劲的是要指定一个合理的测试堆大小 ...
- 全参考视频质量评价方法(PSNR,SSIM)以及与MOS转换模型
转载处:http://blog.csdn.NET/leixiaohua1020/article/details/11694369 最常用的全参考视频质量评价方法有以下2种: PSNR(峰值信噪比):用 ...
- 排序算法----冒泡排序java(写得绝对比其他博文易懂明了实用)
本来不想写的,看到别人写的都不符合自己心意 需进行n(n-1)/2次比较和记录移动,时间复杂度为O(n*n) import java.util.Arrays; import java.util.Sca ...