FT of function $f(t)$ is to take integration of the product of $f(t)$ and $e^{-j\Omega t}$. By separating these two term into real and imaginary forms, the FT can be written as follow:

$\begin{align*}\mathcal{F}\Big( f(t) \Big) &= \int_{-\infty}^{\infty}f(t)e^{-j\Omega t}dt\\
&=\int_{-\infty}^{\infty}\big[f_R(t)+if_I(t)\big]\big[cos(-\Omega t)+isin(-\Omega t)\big]dt\\
&=\int_{-\infty}^{\infty}\Big\{f_R(t)cos(-\Omega t)-f_I(t)sin(-\Omega t)+i\Big[f_R(t)sin(-\Omega t)+f_I(t)cos(-\Omega t)\Big]\Big\}dt\\
&=\int_{-\infty}^{\infty}f_R(t)cos(-\Omega t)dt-\int_{-\infty}^{\infty}f_I(t)sin(-\Omega t)dt+i\int_{-\infty}^{\infty}f_R(t)sin(-\Omega t)dt+i\int_{-\infty}^{\infty}f_I(t)cos(-\Omega t)dt
\end{align*}$

Now, consider a function $g(t)=f(-t)$, and take the FT on function $g(t)$:

$\begin{align*}\mathcal{F}\Big( g(t) \Big) &= \int_{-\infty}^{\infty}g(t)e^{-j\Omega t}dt\\
&=\int_{-\infty}^{\infty}f(-t)e^{-j\Omega t}dt\\
&=\int_{\infty}^{-\infty}f(v)e^{-j\Omega(-v)}d(-v) \qquad letting\ v=-t\\
&=\int_{-\infty}^{\infty}f(v)e^{j\Omega v}dv\\
&=\int_{-\infty}^{\infty}\big[f_R(v)+if_I(v)\big]\big[cos(\Omega v)+isin(\Omega v)\big]dv\\
&=\int_{-\infty}^{\infty}\Big\{f_R(v)cos(\Omega v)-f_I(v)sin(\Omega v)+i\Big[f_R(v)sin(\Omega v)+f_I(v)cos(\Omega v)\Big]\Big\}dv\\
&=\int_{-\infty}^{\infty}f_R(v)cos(\Omega v)dv-\int_{-\infty}^{\infty}f_I(v)sin(\Omega v)dv+i\int_{-\infty}^{\infty}f_R(v)sin(\Omega v)dv+i\int_{-\infty}^{\infty}f_I(v)cos(\Omega v)dv\\
&=\int_{-\infty}^{\infty}f_R(v)cos(-\Omega v)dv-\int_{-\infty}^{\infty}f_I(v)sin(\Omega v)dv-i\int_{-\infty}^{\infty}f_R(v)sin(-\Omega v)dv+i\int_{-\infty}^{\infty}f_I(v)cos(\Omega v)dv\end{align*}$

Compare the derivations. Only if the function $f(t)$ is real ($f_I = 0$) can we receive the equations:

$\begin{align*}
\mathcal{F}\Big(f(t)\Big)
&=\int_{-\infty}^{\infty}f_R(t)cos(-\Omega t)dt+i\int_{-\infty}^{\infty}f_R(t)sin(-\Omega t)dt\\
\mathcal{F}\Big( f(-t) \Big)
&=\int_{-\infty}^{\infty}f_R(t)cos(-\Omega t)dt-i\int_{-\infty}^{\infty}f_R(t)sin(-\Omega t)dt\end{align*}$

Which can be easily concluded that if $f(t)$ is real, the FT of $f(t)$ is complex conjugate to the FT of $f(-t)$

$\color{red}{\mathcal{F}\Big(f(-t)\Big) = F^{*}(j\Omega) \qquad for\ f(t)\ is\ real}$

Take FT on the complex conjugate function $f^{*}(t) = f_R(t) – if_I(t)$

$\begin{align*}
\mathcal{F}\Big(f^*(t)\Big)
&=\int_{-\infty}^{\infty}f^*(t)e^{-j\Omega t}dt\\
&=\int_{-\infty}^{\infty}\Big[f_R(t)-if_I( t)\big]\big[cos(-\Omega t)+isin(-\Omega t)\Big]dt\\
&=\int_{-\infty}^{\infty}\Big\{f_R(t)cos(-\Omega t)+f_I(t)sin(-\Omega t)+i\Big[f_R(t)sin(-\Omega t)-f_I(t)cos(-\Omega t)\Big]\Big\}dt\\
&=\int_{-\infty}^{\infty}\Big\{f_R(t)cos(\Omega t)-f_I(t)sin(\Omega t)+i\Big[-f_R(t)sin(\Omega t)-f_I(t)cos(\Omega t)\Big]\Big\}dt\\
&=\int_{-\infty}^{\infty}\Big\{f_R(t)cos(\Omega t)-f_I(t)sin(\Omega t)-i\Big[f_R(t)sin(\Omega t)+f_I(t)cos(\Omega t)\Big]\Big\}dt\\
&=\int_{-\infty}^{\infty}f_R(t)cos(\Omega t)dt-\int_{-\infty}^{\infty}f_I(t)sin(\Omega t)dt-i\left\{\int_{-\infty}^{\infty}f_R(t)sin(\Omega t)dt+\int_{-\infty}^{\infty}f_I(t)cos(\Omega t)dt\right\}\\
\end{align*}$

Compare the equations.

$\begin{align*}
\mathcal{F}\Big(f(t)\Big)
&=\int_{-\infty}^{\infty}f_R(t)cos(-\Omega t)dt-\int_{-\infty}^{\infty}f_I(t)sin(-\Omega t)dt+i\left\{\int_{-\infty}^{\infty}f_R(t)sin(-\Omega t)dt+\int_{-\infty}^{\infty}f_I(t)cos(-\Omega t)dt\right\}\\
\mathcal{F}\Big(f^*(t)\Big)
&=\int_{-\infty}^{\infty}f_R(t)cos(\Omega t)dt-\int_{-\infty}^{\infty}f_I(t)sin(\Omega t)dt-i\left\{\int_{-\infty}^{\infty}f_R(t)sin(\Omega t)dt+\int_{-\infty}^{\infty}f_I(t)cos(\Omega t)dt\right\}\\
\end{align*}$

The sign of $\Omega$ and the sign of imaginary part have been changed. We can concluded that FT of the complex conjugate of function f is equal to the FT of the function f then do the complex conjugate and reverse on frequency domain.

$\color{red}{\mathcal{F}\Big(f^*(t)\Big) = F^*(-j\Omega)}$

Fourier Transform Complex Conjugate Discussion的更多相关文章

  1. 数字图像处理实验(5):PROJECT 04-01 [Multiple Uses],Two-Dimensional Fast Fourier Transform 标签: 图像处理MATLAB数字图像处理

    实验要求: Objective: To further understand the well-known algorithm Fast Fourier Transform (FFT) and ver ...

  2. 「学习笔记」Fast Fourier Transform

    前言 快速傅里叶变换(\(\text{Fast Fourier Transform,FFT}\) )是一种能在\(O(n \log n)\)的时间内完成多项式乘法的算法,在\(OI\)中的应用很多,是 ...

  3. 【OI向】快速傅里叶变换(Fast Fourier Transform)

    [OI向]快速傅里叶变换(Fast Fourier Transform) FFT的作用 ​ 在学习一项算法之前,我们总该关心这个算法究竟是为了干什么. ​ (以下应用只针对OI) ​ 一句话:求多项式 ...

  4. 傅里叶变换 - Fourier Transform

    傅里叶级数 傅里叶在他的专著<热的解析理论>中提出,任何一个周期函数都可以表示为若干个正弦函数的和,即: \[f(t)=a_0+\sum_{n=1}^{\infty}(a_ncos(n\o ...

  5. 短时傅里叶变换(Short Time Fourier Transform)原理及 Python 实现

    原理 短时傅里叶变换(Short Time Fourier Transform, STFT) 是一个用于语音信号处理的通用工具.它定义了一个非常有用的时间和频率分布类, 其指定了任意信号随时间和频率变 ...

  6. 使用 scipy.fft 进行Fourier Transform:Python 信号处理

    摘要:Fourier transform 是一个强大的概念,用于各种领域,从纯数学到音频工程甚至金融. 本文分享自华为云社区<使用 scipy.fft 进行Fourier Transform:P ...

  7. 从傅里叶级数(Fourier series)到离散傅里叶变换(Discrete Fourier transform)

    从傅里叶级数(Fourier series)到离散傅里叶变换(Discrete Fourier transform) 一. 傅里叶级数(FS) 首先从最直观的开始,我们有一个信号\(x(t)\)(满足 ...

  8. 【manim】3b1b的"Almost" Fourier Transform复刻

    最近在做Fourier Transform的内容,记录一下今天下午的成果. 本文代码全部自行编写,需要math and music项目完整工程可以在gayhub上获取.(现在还没弄完,就先不发了.) ...

  9. Fast Fourier Transform ——快速傅里叶变换

    问题: 已知$A=a_{0..n-1}$, $B=b_{0..n-1}$, 求$C=c_{0..2n-2}$,使: $$c_i = \sum_{j=0}^ia_jb_{i-j}$$ 定义$C$是$A$ ...

随机推荐

  1. k8s 节点的 NodeAffinity 使用

    apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2 kind: Deployment metadata: name: vi ...

  2. GFF高仿QQ客户端及服务器

    一.GFF简介 GFF是仿QQ界面,通信基于SAEA.MessageSocket.SAEA.Http.SAEA.MVC实现包含客户端和服务器的程序,源码完全公开,项目源码地址:https://gith ...

  3. C#理解AutoResetEvent和ManualResetEvent

    当在C#使用多线程时就免不了使用AutoResetEvent和ManualResetEvent类,可以理解这两个类可以通过设置信号来让线程停下来或让线程重新启动,其实与操作系统里的信号量很相似(汗,考 ...

  4. Python从菜鸟到高手(7):字符串

    1. 单引号字符串和转义符   字符串与数字一样,都是值,可以直接使用,在Python控制台中直接输入字符串,如"Hello World",会按原样输出该字符串,只不过用单引号括了 ...

  5. (第十三周)评论Final发布II

    按课上展示的顺序对每组进行点评:(性能.功能.UI.部署) 1.  Nice! 项目:约跑软件 软件操作的响应很快,俩人进行聊天时可以实现消息的及时传递.功能主要有:注册账号.登录.创建/删除跑步计划 ...

  6. Elasticsearch IK+pinyin

    如何在Elasticsearch中安装中文分词器(IK+pinyin)   如果直接使用Elasticsearch的朋友在处理中文内容的搜索时,肯定会遇到很尴尬的问题——中文词语被分成了一个一个的汉字 ...

  7. mysql数据从windows导出,再导入到linux

    从windows导出时,要注意字符集最好和linux的一致,如linux字符集一般为utf8,则导出时可以加上参数--default-character-set=utf8指定字符集,然后导入到linu ...

  8. Linxu-chsh命令

    chsh用于修改登陆后的shell,每个用户都有独立的shell. 以下是chsh命令的常用操作: 一.查看本机安装了哪些shell  chsh -l 二.查看当前用户正在使用的Shell      ...

  9. 【翻译】asp.net core2.1认证和授权解密

    asp.net core2.1认证和授权解密 本篇文章翻译自:https://digitalmccullough.com/posts/aspnetcore-auth-system-demystifie ...

  10. C#设计模式之2:单例模式

    在程序的设计过程中很多时候系统会要求对于某个类型在一个应用程序域中只出现一次,或者是因为性能的考虑,或者是由于逻辑的要求,总之是有这样的需求的存在,那在设计模式中正好有这么一种模式可以来满足这样的要求 ...